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INTRODUCTION

The present paper is the first of a series devoted o the
theory of the syilogism. In this series, we plan to study
topics such as the following: 1) Two algebraic systems re-
lated to the Aristotelian syllogistic; 2) Some basic proper-
ties of two formalizations of the categorical syllogistic, cne
of which is essentially Corcoran's (see Corcoran [1972],[1973],
[1974a] and [1974bl); 3) The doctrine of the quantified predi-
cate, and certain logical systems connected with Hamilton's
conception of the syllogistic, as presented in his New Ana-

Lytics (see Hamilton [1867]).

In this paper, we construct two systems appropriate to the
study of categorical propositions by means of algebraic
operations and relations. In our systems,predicates are quan-
tified in the spirit of Boole's well-known method of indeter-
minate coefficients. We also consider two formulations of
Aristotle's syllogistic, and then investigate the four sys-
tems, treating their interrelations, fundamental properties,

and semantical counterparts.



Our results are mainly concerned with natural deductive
formulations of the syllogistic systems considered. As Cor-
coran and others have shown, this method of presentation
captures better the gist of the syllogism, at least in the
Aristotelian case. However, our exposi‘tion can be adapted to
other methods of formalization, for instance that of Lukasie-

wicz (see Lukasiewicz [1957]).

To give an idea of our programme, let us call positive
the categorical propositions of the forms A and I, and neg-
ative those of the forms E and 0. If [ is a set of cate-
gorical propositions, we denote by I'* the set of positive
propositions in [, We show, for example, that‘in Corcoran's
systematization of the syllogism, if I' is a consistent set
of propositions, « is a positive proposition, and Fr—a ,
then I"+— a«. Furthermore, if B is a negative proposition
and [ 8, then there is a negative proposition 7teT,
such that I*,y — B. Another important point: Corcoran's
system contains both direct and indirect deductions, i.e. it
includes, in a certain sense (see Corcoran [1974a], pp. 116-117),
the rule of reductio ad absurdum. In order to obtain a more
perfect understanding of the formal interplay of the rules
employed, we formulate a direct syllogistic system, equivalent

to Corcoran's.

Soundness and completeness theorems are proved for all

systems introduced, relative to their intended semantics.

The rules of ocur direct version of the syllogistic which

may be applied in a deduction from a consistent set of formu-



las are just those equivalent to some of the traditional

rules for immediate inferences and common syllogisms. There-

fore, the conpleteness theorem which is proved for this ver-
sion is the formal vindication of a belief shared by most of
the traditional logicians: that any valid inference of a cat-
egorical statement from a (consistent) set of categorical

premisses can be reduced to a chain of immediate inferences
and common syllogisms (cf. Aristotle, Palox Analytiecs, I, 23

and La logique de Poat Royal, III, 1).

Most of the results considered here will be employed and

exploited in the forthcoming papers of the series.



1. THE ALGEBRAIC LANGUAGE £

The vocabufary of L is composed of the following sym-
bols: 1) an infinitely denumerable set of simple feams; 2) a
set of simple funcitors (the letters "P" and "Q" with numerical
subscripts); 3) the symbols "=" and "ll". The teams, func-

tons, and foamufas of L are defined by the following rules:

1) Every simple term is a term; 2) if a is a term and
P is a simple functor, then Pa is a term; 3) if a and b are
terms, then a=b is a (positive) formula and all b is a
{regative) formula; 4) if P is a finite sequence of n sim-
ple functors (n>0), P is a functor; when n =0, P is the

empty functor.

Unless explicit mention is made to the contrary, the last
small Latin letters will be employed as variables for simple
terms, and the first small Latin letters will be used as var-
iables for terms in general, capital Latin letters will stand
as variables for functors in general and, finally,small Greek
letters will be used as variables for formulas.

A formula of form Pa=Pb is called an instance of the
formula a=b. If @ is an instance of f and f is not an
instance of any other formula, then § is said to be the oai-
gin of @. It is clear that any formula has one and only one

origin.

The formula a =b is called the conrvense of b =a.



Let T denote a set of formulas; then I'" will denote

the set of positive formulas which belong to T.

2. INTERPRETATIONS OF £

A function F is said to be restradctive on a set U if
and only if: i) U is not empty; ii) the domain of F is the
set of all nonempty subsets of U; iii) for every x in the

domain of F, F(x) €x and F(x) is not empty.

An interpretation of £ is an ordered pair (U,3}, where
U is an nonempty set and 3 is a function which associates
with each simple term of [ a nonempty subset of U, and to

each simple functor of [ a restrictive function on U.

Let I be an interpretation (U,3) of L. We define the
value 1I(z) of z according to I, the value I(P) of the
simple functor P according to I, the value I(a) of the term

a according to I, and the value I(a) of a formula a ac-

cording to I, respectively, as follows: 1) I(z) = 3(2);
2) I(P) =3(P); 3) I(Pa) = I(P)(I(a)); 4) I(a=b) =1 when
I(a) =I(b); I(a=b) =0 otherwise; 5) I(all b) =1 when

I(a) NI(b)=¢; I(al b)=0 otherwise.

We define the terms modef and impficatien as usual.



3.

We

THE STRONG ALGEBRAIC SYSTEM

define the strong algebraic sysiem as follows: its

language is £ and its axioms and rules are those listed be-

low.

Axioms (of identity): a=a

Rule

Rule

Rule

Rule

Rule

Rule

Rule

of

of

of

of

of

of

of

We

positive conversion (or of simmetry): -—p—.—

|

a=b b=c
a=sc

transitivity:

positive instantiation: ‘%:“bpr

assimilation: ﬂsﬁ—:%—

; all b
negative conversion: T

a=b blle
al ¢
al a

substitution:

trivialization:

define, in the usual way, when one formula is dedues-

bfe from a set of formulas in our system (+—). If a set of

formulas is such that any formula whatever is deducible from

it,

set

RD; :

RD::

the
is

We

set is called fnivial or imconsisitent; otherwise, the

said to be consistent.

can easily prove the following derived rules:

a=Pb Qa =b
a=b

Ldﬂ—i. where B is obtained from a by the re-
placement of onme occurrence of ¢ by one occurrence of

d.



We note that we obtain systems equivalent to the one a-
bove if: 1) we replace the rule of assimilation by RD:; 2) we
replace the rules of positive conversion, transitivity, posi-

tive instanciation and substitution by RD:.

4. COMPLETENESS OF THE STRONG ALGEBRAIC SYSTEM

let a be a term and I' a set of formulas. We put:

2" = {b: There exists a functor R such that [ b =Ral U
{{b,e)>: TH-bllc and there exists a functor R such that
''— b=Ra or I'+— c=Ral.

Obviously, a= a”

We shall denote by ¥ the set of terms of [.
if P is a functor, we put:

P’ = {(u,t): Either (i) there exists a temm b such that
w=6" and t=(Pb)", or (ii) u is a nonempty subset of
YU (¥xy) and u=t, and there is no term b such that
u = " 1.

THEOREM 4.1. If a =b", then T[i— a=b.

Proo4. Let us suppose that a"=b". Thus, act’ and
be ar, and therefore there are functors R and § such that
F— a=Rb and T — b=S5a. By the rule of conversion and

RD,, we conclude that [FH a=b.



THEOREM 4.2. T a=b entails a =b'.

Proo§. Let us suppose that [F— a=b. If ¢ is a term
such that ce a.r, then there exists a functor R satisfying
the condition TI'l— ¢=Ra; therefore, by RD., [l— e¢=Rb,
and ceb’. oOn the other hand, if {e,d) is a pair of terms
such that {(c,d>ea’, then,. ' clld and there is a func-
tor R such that” '— e=Ra or THFH d=Ra. By RD:,
F'— ¢c=Rb or I+ d=Rb. Thus, f{c,d)e b* and, conse-
guently, argbr. Analogously, brgar.

THEOREM 4.3. (Pa)  ca”.

Proof. Immediate, taking into account the definitions

of (Pa)" and a'.

THEOREM 4.4. P’ is a restrictive function on the set

U (¥ xy).

Proof. We easily show (with the help of Theorem 4.2)
that P’ is a function, and clearly the domain of P’ is the
set of all nonempty subsets of VYU (¥x¥). Moreover, if

(u,t’e P’, then tcu (by Theorem 4.3) and u #9¢.

Let ' be a set of formulas and let ¥ be a function
which associates with each simple term x of L the set xr,
and with each simple functor P of [ the set pr. The pair
(U (¥ x¥),F) constitutes an interpretation of [ which we

shall denote by 1



THEOREM 4.5. 15 (a) = a'.

Prgod. By induction on the length of a. If a is a sim-
ple term, then by definition 1I"(a)=a’. Let us suppose that
a has the form Pb, where P is a simple functor. By defi-
nition, I (Pb) =P (I"(b)); but 17 (b) =b", by the induction

hypothesis and, by definition, PT(6") = (P&)".

THEOREM 4.6. Let I be a consistent set of formulas of

r; T+ allb if, and only if, a Nnb" =¢.

Proc4. Let us suppose that T H- al b; it is easily

verifiable that (a,blea’ and (a,bdeb.

Now, let ¢ be a term such that c¢e a" and ceb’. By

definition, there are functors R and S such that P+ ¢=Ra
and CFH— ¢ =Sb;: hence, I — Ra=S5b. Therefore, '+ Ral Sb,
since I' is supposed to be consistent; but the formula Rall St

can be derived from all 6, and thus we conclude that ' = allb.

Finally, let ¢ and d be terms such that {c,dde 2" and

(e,d)e b°. By definition:

(i) - cll d;

(ii) ‘there is a functor R such that [l— c¢=Ra or
' d=Ra;

(iii) there is a functor § such that [i— ¢=8% or
Mi— d=5b.

Now, from (ii) and (iii) we conclude that one of the follow-

ing alternatives obtains:



() Tl Ra=5b
(II1) T e=Ra and d=5b

(f11) T[l— d=Ra and c¢=S5Sb.

As we have seen above, (I) is ruled out by the assumed con-
sistency of I'. From (II) and (i), as well as from (III) and
(i), we conclude that T - Ral Sb; but this formula can be

derived from allb. Hence, T'H- all b.

THEOREM 4.7. If [ is a consistent set of formulas of

£, then Pl a if, and only if, I (@) =1.

Proo4. By Theorems 4.1, 4.2, 4.5 and 4.6.

THEOREM 4.§. (Completeness). [t— «a if, and only if,
' implies «.

Precf. If T l—a, then, by induction on the length of
a deduction of a from I, we prove that I implies a. Let
us suppose that I implies a; if I' is inconsistent, then

N—a; if I is consistent, then 1 is a model of I (The-

orem 4.7) and, conseguently, 17 (@) =1; by Theorem 4.7,
M—a.
THEOREM 4.9. (Completeness, second versiom). I is con-

sistent if, and only if, it has a model.

Proog. By Theorems 4.7 and 4.8.

10



We remark that our algebraic system may be easily shown
to be decidable, by means of an interpretation in the first-

order monadic predicate calculus.

5. THE WEAK ALGEBRAIC SYSTEM

The weak afgebraic system has as its underlying language
the language £, and includes, besides the axioms of identity,
the rules of positive conversion, transitivity, positive in-

stantiation, negative conversion and substitution.

We define as usual the concept of deducibility of a for-
mula « from a set of formulas I (and write T - a) in the
weak algebraic system. We can show that RD: is also a de-

rived rule in our new system.

THEOREM 5.1. T - a=b entails I"F-a=b.

Proof. By induction on the length of a deduction of a=b

from T .

THEOREM 5.2. If T allb, then there exists a nega-

tive formula £ such that rBi— alb.

Proo4. By dinduction on the length of a deduction of

all b from T.

1



THEOREM 5.3. Let us suppose that S is a simple functor
which does not occur in any element of T°. C1f IMHta=b .
then either $§ does not occur in a=b or § occurs both in

a and b.

Proog. By induction on the length of the deduction of
a=b from I", under the proviso that $ does not occur in

any element of I,

THEOREM 5.4. Let S be a simple functor which does not
occur in any element of IV {a} VU {b}. If I P RSa=TSh,
then I - a=5b.

Proog. By induction on a deduction of RSa=TSb from I,

with the help of Theorem 5.3.

THEOREM 5.5. If T, clld+ all b, then there exist
functors S and T such that either I F a =S¢ and
" b=Td or Mk a=Sd and I F b =Te.

Proog§. By induction on a deduction of allb from

" u{cl d}.
DEFINITION. T will denote a set of formulas of £. A
sequence 4,,d,,...,a (n>1) of terms is said to be T[-zeg-

ulan if, for all j (1<j<n), the formula aj=aj” is an

axiom, or an instance of a member of I', or an instance of the
converse of a member of TI. When, for any j and k

are different, we say that

(1<j<k<n), terms dj and a.



the sequence is stradlctly M-negufar. Obviously, a sequence is

M-regular if, and only if, it is " -regular.

THEOREM 5.6. T+ b=¢ if, and only if, there exists 2
l-regular sequence @ ,d,,.--,4%, such that 2, is b and a_
is c.

Proo§. We easily prove by induction on n that, if

a is [@'-regular, then r— e, =a_. 1f T+ b=c,

a a & e
1772 R -

it is also easy to show, by induction on the length cf.a de-
duction of b=c¢ from [, that there is a seguence T a,

which is TI'-regular and such that a, is b and a, is e.

THEOREM 5.7. Let b and c be two different terms;
P+ b=c¢ if, and only if, there is a strictly [-regular se-

guence dl'dz""’dk in which o.'l is b and dk is c.

Proc4. Taking into account Theorem 5.6, it is suffi-
cient to prove that, if al,az,...,an is a [-regular sequence
such that ay and a are two different terms, then there ex-
ists a strictly [-regular sequence dl'dZ’""dk in which a,
is d, and a is dk. This may be proved by induction on z.
When d,,&p,-,a, is strictly [-regular, there is nothing to
pe proved. Now, let us suppose that a, and a_ = are not e-
qual, and that a,;,@,,-d/ is not strictly l-regular, but
only l-regular. We consider the least number j such that
there exists a number k which satisfies the inequalities
1<j<k, and a. is 4a,. Three possibilities are then open

|

to us: (i) j=1; 1in this case, evidently k<a, ak,ak+l,.-.,an

13



is P-regular, and ¢, is a,; we complete the proof by the
application of the inductive hypothesis; (ii) j#1 and k=n:
it is clear that 1<j<a, that ay,dy,mdy is TI-regqular,
and that o is a_ ; we complete the proof as in case (i);
(iii) j*1 and k#n; in this case we have that 1<j<k<an
and that al"""j'“hl"‘“
proof as in the preceding cases.

a  is F-reqular; we complete the

6. THE LANGUAGE £, AND ITS INTERPRETATIONS

The vocabulary of £, is composed of the simple terms of
£ and of the refatdion symbofs “A", “E", "I" and "O". The
formulas of £, are expressions which consist of one relation
symbol followed by two distinct simple terms. Unless explicit
mention is made to the contrary, the last small Latin letters
will be used as variables for (simple) terms, and small Greek

letters will denote formulas.

Formulas of the forms Axy and Ixy will be called posi-
tive, and the others negative. If I is a set of formulas of
£,, then T will denote the set of positive formulas  that

belong to T.

For any formula a of £,, we define the contradictory
of a, C(x), as follows: (i) C(Axy) =Oxy; (ii) C(Oxy) =Axy;
(iii) C(Exy) = Ixy; (iv) C(Ixy) =Exy.

An interpretation of £, is a function from the set of

terms of £, into a collection of non-empty sets. If % is an

14



interpretation of £;, one defines the value T¥F(@) of a for-

mula @ by the clauses: (i) F(Axy) =1 if, and only if,
F(x) € 7(y); (ii) F(Exy) =1 4if, and only if, TF(x) N Fly) =¢;

(1ii} F(a)=1 if, and only if, F(C(a))=0; (iv) F(a) =1 if,
and only if, ¥F(a) #0.

We define in the standard way the concepts of a model of
a set of formulas and the relation of 4implication between a

set of formulas and a formula.
7. THE DIRECT ARISTOTELIAN SYSTEM
The dinect Andstotelian system (of the syllogistic) has

£, as its underlying language and possesses the following

rules of deduction:

BukiEea _AY_ZAK_ZA"X_ Celarent —EX—ZEK-%AEY—
varii ~ 2YE_DXY Ferio e
Baroco szonoxv Bocardo _O%:_{?A&
I-conversion —i%;‘:—‘ E-conversion %-:_
Al-subalternation %5— EQ-subalternation gi;
o C(a)

Trivialization



We define, in the usual way, deducibility of a formula &
from a set of formulas I, in the direct system (we write
r—= @). If the set of formulas I (of £L;) is such that
' ¢ for any formula @ whatscever, we say that [' is
inconsistent®; otherwise, T' is said to be consistent®.,
Obviously, the valid modes of the Aristotelian syllogism

are valid deduction rules of the direct system.

It is not difficult to see that, if there exists a de-
duction of a formula « from the set I' where the rule of
trivialization is employed, then there exists a deduction of

¢ from I where this rule is employed only once.

THEOREM 7.1. T and @ are a set of formulas of £; and a
positive formula, respectively. If there exists a deduction
of @ from I' in the direct system in which the rule of triv-

jalization is not used, then I"I— a.

Prood. By induction on the length of deductions.

COROLLARY. If I is a consistent® set of formulas and «

is a positive formula, then we have: T F o entails I'l—a.

THEOREM 7.2. [ is a set of formulas and @ is a negative
formula. If I F—a, then there exists a negative formula f#

such that fel and I",f H—a

Proof. Suppose that & is negative and T Fa. It is

1



not difficult to see that there is a deduction of o from r
in which the rule of trivialization is not employed or is em-
ployed just once, precisely in order to justify the one and
only occurrence of « in the deduction. The theorem may be
trivially proved by induction on the length of this kind of

deduction.

COROLLARY 1. [*!—« entails that a is positive.

COROLLARY 2. I is consistent”.

THEOREM 7.3. [ is a set of formulas of £,. I Bxy
if, and only if, there exists a seguence of distinct terms

satisfying the following conditions: 2z, is x, 2

4 ey 2
1.rzzr "“n n

-

is y, and, for any j such that 1< <n, Azjzj+1a L.

Proof. Suppose there is a seguence 2Z,,Zy,=vZ, such as
described in the theorem. We show easily, by induction on o,

that T Az Now, suppose that " = axy; first we

1%n-
prove that there is a sequence of terms, not necessarily dis-
tinct, 2;.Z,,-0Z which satisfies the three conditions for-
mulated in the theorem. Finally, we complete the proof by
induction on the number of terms of this sequence which occur

more than once in it, in a way similar to the one employed in

the .proof of Theorem 5.7.

1f T is a set of formulas, we shall represent by r4 the

set of elements of [ having the form Axy.

17



THEOREM 7.4. T is a set of formulas of L;. " = azw

if, and only if, rd = azw.

Proog§. Trivial, with the help of Theorem 7.3.

THEOREM 7.5. If T is a set of formulas of I, and

I, Axy, Ayx |— Azw, then T, Axy — Azw or I, Ayx — Azw .

Proof. Let us suppose that I, Axy, Ayx — Azw; by The-
orem 7.3, there exists a sequence of distinct terms
ZyiZgraZ s where z, is 1z, z, is w, and, for every 3,
1<j<a, Z\zizj+1 belongs to I” U {Axy, Ayx}. We represent
by A the set {B: there is a j such that 1<j<n and § is
Azjzj+1}. We prove, by induction on a, that AI—'Azlzn i e
e. AF-Azw. But since Z,sZyep2  aTE distinct terms, it
follows that either Axy g A or AyxegA. However,
AcrI U{Axy, Ayx! ; therefore, & ¢ I" u{axy} or

A ¢ I"u{ayx}, and so the theorem is proved.

THEOREM 7.6. T is a set of formulas of £;. If I Ixy
and rd Ixy, then there exist terms z and w such that

Izwe I and I Izw b Ixy.

Proof. By induction on the length of a deduction of Ixy

from I.

THEOREM 7.7. Given the set of formulas [, if
[, Axy — Azw and [" 19~ Azw, then we have: (i) either x is

z or I Azx; (ii) either y is w or ["l—aAyw.



Proo§. By induction on the length of a deduction of Azw

from I U {Axy}.

THEOREM 7.§. Given the set of formulas I, if
I, Axy — Izw and Il Izw, then we have:
either (i) TI*F-1Izx, if x is not z, and I"F-ayw, if y
is not w, or (ii) "+ Iwx, if x is not w, and

r"—ayz, if y is not z.

Proo4. We proceed by induction on the length of a de-
duction of Izw from [" U{Axy} Let us assume that I I+ Izw.
If the formula Izw is derived from BAzw _in the deduction,
then we prove the theorem with the help of Theorem 7.7, for
the initial assumption implies that T F-Azw. If Izw is de-
rived from Iwz , the theorem follows trivially from the in-
duction hypothesis. So, let Izw be derived in the deducticn
by means of the rule DARII. By the induction hypothesis,
there is a term t such that TI", Axy F- Izt and I, Axy F— Atw.
Obviously, our initial assumption ensures that I+ Izt or

17— Atw. There remain three cases to be considered:

(a) T'I19-Izt and T I-~Atw; in this case the theorem
is easily derivable by means of the induction hypothesis.

(b) T 1zt and [I'!v-Atw; in this case the theorem
is easily derivable, with the help of Theorem 7.7.

(¢} Tl 1zt and ["!7—Atw; by the induction hypoth-

esis,



either (i) I F-1Izx (if z is not x) and I"F—Ayt (if
y is not t)
or (11) MF-TItx (if t is not x) and I"F—Ayz (if

y 1is not z).

Moreover, by Theorem 7.7, we have: (iii) I+ ayw.
Now, (ii) and (iii) imply that I -~ 1zw, which contradicts
our initial assumption. So, the alternative (i) obtains; but

(i) and (iii) prove the theorem.

THEOREM 7.9. T is a set of formulas of £,. If
I, Axy, Ayx — Izw, then either T, Axy  Izw or

I, Ayx H— Izw .

Proof. By induction on the length of a deduction of Izw
from I, Axy, Byx. If Izwel", then the theorem is trivi-
ally provable. If Izw is derived in the deduction by con-
version or subalternation, then the theorem is easily provable
by means of the induction hypothesis or Theorem 7.5, respec-
tively. Let us assume that Izw is derived in the deduction
by DARII. There is a term t such that [7, 2Axy, Ayx = Atw
and TI';Axy, ayx I Izt. In view of the induction hypothesis

and Theorem 7.5, there are four cases to be considered

{a) I, BxyH+— Atw and I, Axy M Izt; obviously,
T, Axy - Iaw.

(b) T, Ayx — Atw and I’, ayx — Izt; obviously,
r*, Ayx — Izw.

(@) I, ayxF atw and [, Axy — Izt; if ["l— Izt or

20



I I~ Atw, then the theorem can be proved as it was in
(a) and (b) above; so, let " i+-1zt and [’ - Atw. By
Theorem 7.5, we have: (i) I~ aAxw (if x is not w)  and
(ii) T+ Aty (if t is not y). Now let TI” =~ 1zx or
x be z; by (i), TI"l—1Izw; but if x is not z and
r* - 1zx, then, by Theorem 7.8, ["I— Itx (if x is not
¢) and I I—Ayz (if y is not z). Together with (i)
and (ii), this implies that = 1zw.

(@ I°,Axy - atw and T, Ayx F- 1zt; in this case, ,the

proof is analogous to that of case el «

8. THE INDIRECT ARISTOTELIAN SYSTEM

The indirect Aristotelian system, essentially that of
Corcoran (cf. Corcoran 1972), is formulated in £;. A onoog
in it is a finite sequence of ordered pairs {a,['), where &
is a formula of £, and I is a finite set of formulas, such
that: (i) e@eTl; or (ii) there exist two previous pairs in
the sequence, ¢(f,¥) and {(v,A), where = YUA and o is
obtained from # and v by Barbara or Daadi; or (iii) there
exists a formula f such that « is obtained from £ by  the
rule of I-conversion or by the rule of AI-subalternationm, and
the pair (@,[') occurs previously in the seguence; OI (iv)
there are two preceding pairs in the sequence, (6,9 and

(y,¥), where ¥ =Tu{Clx)} and £ =C(¥).
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If (a,l') is tho; last pair of a proof in the indirect
system, this proof is called a proof of (a,[) in the system.
If there exists a proof of f(a,'}) and A is a set of formu-
las of £, such that I'CA, then we say that « is a conse-
quence of (or is deducibfe) from A, and we write: Al—a.

A set of formulas V¥  is called inconsistent if ¥+ for any

formula 7 whatsoever; otherwise, V¥ is said to be consistent.

Let T and A be finite sets of formulas of £;. We eas-
ily prove that if there exists a proof of (a,[} in the in-
direct system, then there is a proof of (a,TUA). There-
fore, if A is finite, I'CA and there exists a proof of
{(a,I'), then there is also a proof of ({(a,A). If A is fi-

nite, At—a if, and only if, there is a proof of (a,A).

THEOREM &.1. Tu{e} is a set of formulas of £;. If

'~a, then I'—a.

Proof. By induction on a proof of a from T.

Therefore, the valid modes of the Aristotelian syllogis-

tic constitute valid rules of the indirect system.

THEOREM §.2. If [, al— g, then TI',C(f) — Cla).

Proof. Immediate.
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9. COMPLETENESS OF THE INDIRECT SYSTEM

Let ' be a set of formulas of £,. Given the term x,

we put:

xT) = (x}uly: I — ayx},

and
x' = x(r)U{(z,w): ' —1Izw and (zex(r) or wex(r))}.
THEOREM 9.1. T Axy if, and only if, x cy',' for
any two distinct terms x and y.
Proof. (i) T FAxy and z is any element of x(r); if

z is x or y, then obviously zey(”; if not, I' —azx and,

by Barbara, T F—Azy, and zey(r); hence x(r)gy(”.

(ii) [ FAxy and z and w are such that (z,ﬁ)e xr; then,

by (i) above, we clearly have that (z,w)e yr; so xrg F

]

r r . r
(iii) TIf x Ccy , then, since xe€x , we have that xev and

' —axy, if x is not y.

THEOREM 9.2. T+ Ixy if, and only if, x Ny # ¢, where

x and y are distinct terms.

Proo4. (i) If T Ixy, then, by definition, (x,y’e x
and (x,yey'. (ii) Let x ) ﬁy(r) #¢ ; there exists a term
z such that zex(” and zey(”; if z is x, then
' —aAxy and, hence, [I'lIxy (subalternation); if z is vy,
then T FAyx and, therefore, I F—Ixy (subalternation and

conversion); if 2z is neither x nor y, then T FHjazx and

I'+—azy; so, [ F—Ixy (Darapti). (iii) Suppose there are
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terms z and w such that (z,w)exr and {(z,wle yr. By def-
(r) (r)

inition, [ F1Izw, and: (a) zex and zey ; we have
that T —iIxy, by (ii) above; or (b) we xT) and we y(”;
in this case, @' —Ixy by (ii) above; or (c) zex(r) and
we y(r); if z is x and w is y, we get TIl—Ixy; 4if z is

% and w is not y, we get Ii—1Ixw and [ FAwy, and there-
fore [ FiIxy (Darii); when z is not x and w ds ¥y, we
have T 'lazx and [ F1Izy, and [ H—Ixy (Disamis); when z
is not x and w is not y, then T FAzx and T r—2wy. Tnus,
since T F—Izw, we have that [ FiIxy (Daril and Ddisamis);

(r):,

or (d) =zs= y(” and WwWEX similar to case (c). To con-

clude, then, T FH1Ixy if, and only if, x" ﬂyr*tﬁ.

THEOREM 9.3. T is a consistent set of formulas of £,.
We have: 1) If T FHExy, then x" ny" =¢; 2) 1f T Foxy,
then x £ yr.

Proc4. Immediate.

Let I be a consistent set of formulas of £,. We shall
denote by 1" the function which associates with each term x

of £, the set xT. This function is an interpretation of L.

THEOREM 9.4. T¥

is a model of I whenever [ is consis-
tent.

Prood. By Theorems 9.1 to 9.3.

THECREM 9.5. If ThHoe, then [ implies «a.

Proe4. By induction, in the usual manner.

24



THEOREM 9.6. T is consistent if, and only if, ' has a
model.

Proo§. Theorems 9.4 and 9.5.

THEOREM 9.7. Tui{c(e)} is inconsistent if, and only

if FH— a.

THEOREM 9.§. 1If I implies o, then [k a.

10. THE WEAK ALGEBRAIC SYSTEM AND THE ARISTOTELIAN SYSTEMS

We suppose as given an enumeration of the formulas of Il..

For any formula « of £, we define the transfation o4 & 4n

£ , in symbols tr(«), as follows (j is the number of a in
the given enumeration): (i) if @ is Axy, then tr(a) is
x=ij: (ii) if « is Ixy, then tr{a) is ij=ij; (1ii)
if @ is Exy, then tr(«) is xlly; (iv) if e is Oxy,

then tr(«) is ijlly.

1f T is a set of formulas of £L,, we denote by tr (')
the set of formulas p such that, for some element « of [, 8
is tr(a).

A formula « of £, is said to be a veision of a formula
3 of L if: (i) @ is BAxy and there is a non-empty functor
R of & such that B is x=Ry; or (ii) e is Ixy and there
exist two non-empty functors R and S of £ such that B is

Rx = Sy; or (iii) « is EXy and B is xly; or (iv) o« 1is
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Oxy and there is a non-empty functor R of L such that B is
Rx ll y.
We remark that if I is a set of formulas of I,, then

tr(l) is a set of formulas of £ satisfying the condition

that each element «@ of tr(l') is not an instance of any other

formula of L. Therefore, if 8y sy sep@ is
a tr(l)-reqular sequence and 1<k<nu, then the origin of
2, =3 ., is an element of tr(l') or is the converse of an
element of tr(f) or is an axiom (when a, is ak+1) "
THEOREM 10.1. Let I be a set of formulas of I;,

ayr8y,pa 2 strictly tr(l') -regular sequence with =n>2, and
k a number such that 1<k< (n-1). If the origin of 2y T3,

is b=c¢, then the origin of 241 T 8gsy 1S not c=b.

Pree4. Given the conditions expressed by the hypothesis

of the theorem, let us suppose that the origin of a, Ta. is
b=c and that the origin of e T 342 is c=b. ap =3,
is of the form Rb=Rc and A1 T 342 has the form S5c = Sb.

But in this case, R is § and, consequently, a, is A

which is absurd, since the sequence is strictly regular.

THEOREM 10.2. T denotes a set of formulas of -Cl '
a,,3,,-,a8  1is a strictly tr(l)-regular seguence, and x5 is
the simple term that occurs in a; (1<j<n). If the origin
of a, =a, has the form xl=Qx2, then for all k, 1<k<n,
the origin of a =a has the form xk=ka+1, for some

simple functor R.
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Proof. Given the conditions expressed by the hypothesis
of the theorem, let us suppose that the origin of a; =a, has
the form x1=Qx2. Given that a, is not a,, we conclude
that Q is a simple functor, by the definition of tr(l): if
n=2, we have nothing to prove. If n>2, we prove the
theorem by induction on n; since a,,-.a; is also a strictly
tr (I) -regular sequence, it is enough to prove that a, =a, has
as its origin a formula of £ of the form x2=Rx3, for some
simple functor R. By the definition of a strictly regular
sequence, the origin of a, =a, is not an axiom, hence it is
an element of ¢tr(l') or the converse of such an element.
Thus, it is either of the form x, =Rx,, for some simple
functor R, or is of the form sz =b, for some simple func-
tor S. If the origin of a, =a, is of the form sz =b,
where S is a simplé functor, since a,=a, Iis, by hypothe-
sis, an instance of X, =Qx2, where 0 is a simple
functor, we conclude that (Qx, 1is S%, and, therefore, that-
Q is S. However, by the definition of tr(r), a simple
functor cannot occur in more than one element of tr(l). We
arrive at the conclusion, then, that Sx2=b is the converse

of x, =0x2, which is absurd, by Theorem 10.1.

THEOREM 10.3. [ is a set of formulas of [, ay sy smedy
is a strictly tr(Tl)-regular seguence (n>2} and xj is the
simple term that occurs in a; (1<j<n). If the origin of

a, =a, has the form Px.i = sz, where P and ( are two sim-
ple functors, then the crigin of a, =a, has the form
Xy = Rx3 for some simple functor R.
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Proof. Analogous to the last part of the proof of Theo-

rem 10.2.

THEOREM 10.4. Given the conditions of Theorem 10.2: if

the origin of a, =a, has the form X, =Qx2, then Xy is X,

or Fl—.nxlx .
n

Proof. If the hypothesis of the theorem is satisfied,

let us suppose that the origin of a, =3, has the form

X, =Qx2. By the definition of tx(l), Axlxze I' and, conse-

quently, T Ax . x When =n =2, the theorem is proved.

172°
When 1n>2, we prove the theorem by induction on n. The in-

duction hypothesis and Theorem 10.2 show that X, is x ~or

T Ax,x (because a,imrdy is a strictly tr(l')-regular se-

guence of length less than n). If X, is x| the theorem

is proved; otherwise, we conclude that r i—'Axlxn(by Barbana)

or X is ®_s
1 n

THEOREM 10.5. Given the hypothesis of Theorem 10.2: if

the origin of a, =a is of the form le =Qx2, where P and

1

Q are simple functors, we have: xl is :«crl or r'l—'-lexn.

2z

Proo4. Analogous to the proof of Theorem 10.4, with the

help of Theorem 10.3 and 10.4.

THEOREM 10.6. Let T be a set of formulas of £;,, x a
simple term, and b a term of L . If tr(l) |—.—x=b, then b
is x or b is not a simple term.

Proof. With the help of Theorems 5.7 and 10.2.
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THEOREM 10.7. Given the conditions of Theorem 10.2: if

the origin of a; =3, is of the form le =Xgr then %y is

x, or r— Ix % .

Proof. By the definition of +tr(l), Ax,x, € E hence
r—= Ix;x,. When n=2, the theorem is proved. When n>2,
we reason by induction on n . We have three cases: (a) the

origin of a, =a, has the form x2=Qx3 and, by Theorem 10.

e »
. il
4, x, 1is x_ or r Ax,x . Thus, since T H— I Xo, we

conclude that %y is x  or r = lexn; (b) the ori‘gin of
a,=a, has the form sz =Qx3, where R and (Q are simple func-

tors. In this case, by Theorem 10.5, X, is x or r— Ixzxn.

Since ' Ax_x_. , it follows that x ., is x or IH Ix x_;
271 1 u 1"n

(c) the origin of a,=a, has the form Rx,=x;; by the in-

duction hypothesis, x, is x or ri— Ixzxn. Since

I‘I—Lszx,weseethatx is x or I Ix x .
1 1 o 17n

THEOREM 10.8. Tu{3} is a set of formulas of L.
ri—g if, and only if, there exists a formula a of [ such

that § is a version of &, @« is positive, and tx(l) e

Proo4. (i) One easily proves that if I > 8, then there
exists a formula « of L such that f is a version of «, «
is positive (Theorem 7-.2, Corollary 1) and tr(I') o

(ii) if there exists a positive formula o« of [, of which §

is a version, tr(T)+H-a and a« has the form b=c, then
there exists a strictly tr(l')-regular seguence a2y, 8)
such that a, is b and a is ¢, by Theorem 5.7 (the fact

that f is a version of b=c assures us that b and c are
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distinct terms). We have three possible cases: (a) the origin
a; =a, has the form X, =Qx2, where ( is a simple functor.

Since Xy is not X because a; =a, has the version £ in

L£,, Theorem 10.4 implies that T = Ax, X and, therefore,

that T'H— 1x x i but f is Ax x, or Ix.x , because it is

1 1"n
=a ; (b) the origin of a,=a, has the form

1

a version of 2,

Px1=0x2, with P and Q simple functors; x is not x and,

1
by Theorem 10.5, we have T = Ix,x ; but B is Ix,x ; (c) the

origin of a =a, ‘has the form Px =%, where P is a simple

1 1
functor; as in case (b), Theorem 10.7 entails that T —8 .

THEOREM 10.9. Tu{f} 1is a set of formulas of L,. If there
exists a proof of § from I in the direct system in which
the rule of &trivialization is not used, then tr(l) — ; foxr

some « of L such that f is a version of «o.

Proc{. By induction on a deduction of # from T .

THEOREM 10.10. Let I be a set of formulas of L. If T
is inconsistent®, then there exists a term a of [ such that

er(T) — all a.

Procé. TIf T is inconsistent®, it is easy to see that
there exists a formula o of L, such that T —a, T o),
and both @ and C(&) can be deduced from ' in the direct

system, without any application of the rule of trivialization.

We may suppose that a is positive. By Theorem 109
tr(T) — 3 and tr(T) M v, where « is a version of f and
Clx) a version of 7. Two alternatives are possible: (a) «

30



is BAxy ; f then has the fomm x=Ry and 7 has the form

Sxll y, hence tx(l) — Sx |l Sx; (ii) « is Ixy; B has the

form Tx=Ry and v the form x|y, thus tr () Txll Tx.

THEOREM 10.11. T is a set of formulas of £, and 5 is a
negative formula of this language. If there exists a formula
@« of L such that B is a version of & and tr(l) F—a, then
r—gs.

Proof. Suppose there is a negative formula & of "ex(l)
such that B is a version of & and tr(l) — a. The formula
§ has either the form Exy or the form Oxy. By Theorem 5.2,
there is a negative element 7 of tr(l') suck that tr(F),y Ha.
There are two cases to be considered.

{a) v is tr(Ezw), thus 7 is zlw and we have

(1)  Er(r)*, zlw o ;

(ii) Ezwe .
Let § be Exy; then & will be xlly; (i), Theorems 5.5,
10.6 and 10.8 ensure that either T  Axz (if x is not z) and
' Ayw (if y is not w) or I axw (if x is not w) and
P+ ayz (if y is not z). Together with (ii), this leads
easily to the conclusion that T - Exy. Yow let 8 be Oxy.
This means that & is Sxlly, for some non-empty functor S.
From (i), Theorems 5.5, 10.6 and 10.8 ensure that either
I Ixz (if x is not z) and ['H Aayw (if y is not w) or
[ Ixw (if x is not w) and T~ Ayz (if v is not z). Com-
bined with (ii), this easily leads to the conclusion that

r = oxy .



(b) v is tr(Ozw). Thus it is Pzl w, for some simple
functor P which occurs in no element of tr(l')” and we have:
(1) tx(F)°, Pzl w o ;

(ii) OzweTl.
We can show that § cannot be Exy. For suppose it were, then
the formula o« would be x|l y. By (i) and Theorem 5.5, we
would derive that, for some functor R, tr(l)°  x=RPz or
tr(r)” = y=RPz ; but this conclusion is made impossible by
Theorem 5.3. Hence, £ is Oxy and o is Sxiy, for some
non-empty functor S. As it is not the case, for all func-
tors R, that tr(T)’ F y=RPz (Theorem 5.3), we obtain from
(i) and Theorem 5.5 that:

(iii) +r(F)” + Sx=RPz, y=Qw, for some functor R and

some non-empty (Theorem 10.6) functor Q.

This and Theorems 5.4 and 10.6 imply that:

(iv)] tr(l')” ¥ z=Tx, for some non-empty functor T.
From (iii), (iv) and Theorem 10.8, we derive that I azx
and T+ Ayw. Together with (ii), this leads to the conclu-

sion that [ Oxy .

THEOREM 10.12. T is a set of formulas of £ and a,b and
¢ are terms of L. If, T, ble — alla , then there exist non-

empty functors R and S such that [ — Rb=Sc.

Proo4 With the help of Theorem 5.5.

THEOREM 10.13 Let I be a set of formulas of £, x and

y two distinct simple terms, P a simple functor which does
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not occur in any element of tr(l)’, and a a term of L. If
tr(r)’, Pxly — alla , then there exists a non-empty functor R
such that tr(l)°  x =Ry.

Proof. If +tr(r)’, Pxly — ala, then by Theorem 10.12
there exist non-empty functors S and T such that
tr(r)* — SPx=Ty. By Theorem 5.3, Ty can be written as
QPUy, where Q is a functor and U a functor in which P does
not occur. By Theorem 5.4, tr(l‘)'l—.-x-=Uy and, by Theorem

1]

10.6, U is not empty.

THEOREM 10.714. The set of formulas ' of £; is incon-
sistent® if, and only if, there exists a term a of £ such

that tr(I') — al a.

Proo4. By Theorem 10.10, it suffices to show that T is
inconsistent® if there is an a such that <r(l'} — aia. If
there exists such a term, then, by Theorem 3.2, there exists
a negative formula f in tx(T) satisfying the condition:
tr(r)*, g — all a. Hence, we have that either B is of the
form xlly, where x and y are distinct simple terms, or £
is of the form Px|ly, where x and y are two distinct sim-
ple terms, and P a simple functor that does not occur in any
element of tr(l)*. 1In the first hypothesis, [ Exv and,
by Theorems 10.8 and 10.12, r— Ixy; in the second,
'~ oxy and, by Theorems 10.8 and 10.13, [+ Axy. In both

hypotheses, I' is inconsistent”.
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THEOREM 10.15. T is a consistent® set of formulas of £y,
x and y are simple terms, and a is a term of L. If
tr(r),tr(Axy) — all a, then tr(l) +— g, for scme formula B

such that Oxy is the version of §.

Proo4. Suppose that tr(l),tr{axy) — alla. Since I' is
consistent®’, by Theorem 10.14 Axy¢Tl. By Theorem 5.2, there
exists a negative element 7y of tx(l) such that
er(r’ v{axyl), v — alla. Two cases are possible: 7 is zllw or
v is Pz llw, for some simple functor P which does not occur
in any element of the set tr(r* v{axy}) (cbviously,

tr(r” u{axy}) is identical to tr(l'V {axy})7")-

By Theorem 10 .12, either there are functors R and S such
that tr(lFV{Axy})*F— Rz=5Sw (if v is zlw) or
tr(rv {Axy})’i; RPz = Sw (if 7 is Pzllw). Hence, by Theorem 5.7
there exists a strictly tr(l'UV {Axv})’-regular seguence

b 1:.2,---,bu such that bl is Rz (when v is zllw) or RPz (when ¥

1’
is Pzl w), and b_ is Sw. Since tx(l)1+- b1=bn, because

er(M) = Rz ll Sw (if 7 is zlw) or tx(T) F RPzl Sw (if 7 is
Pzllw) and T is consistent, we conclude that there exists a

j (1<j<a) for which b1=bj+1 has as origin tr(Axy) or the

converse of tr(Axy).

Let tr(Axy) be of the form x=(Qy, where Q is a simple
functor which does not occur in any element of tr(l). There
exists the least number h such that 1<h<n=a and the origin
of by =b, ., is x=Qy or Qy=x, and there exists the
greatest number k such that 1<k<n and the origin of bk =

-=bk_,.1 is x=Qy or Qy=x. Clearly, the seguences
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bl'bz'""hh by, by if h=1) and bk+1’bk+2’""bn (bn, b, if
k¢l =n) are tr(l) -regular. Therefore, by Theorem 5.6:
(1) tr(f)"-b =b, and Er(M) by, =b,.
Let the origin of bhzbh+1 be Qy=x. We show that the
origin of bk =bk+1 cannot be x=0Qy. Suppose it were, then
by (i), we would have:
(ii) tr(l)*'F—UQy =Sw, for some functor U;
(iii) if v is =zl w, then tr(r)*— Rz = VQy, for some
functor V; L
(iv) if v is Pzl w, then tr(r)"I-— RPz =VQy, for some

functor V.

Together with Theorems 5.3 and 5.4, {ii) implies that

tr(r)’ T—:‘y =Mw, for some functor M; (iii) implies that, if
v is zlw, them tx(l)’ |-~y =Tz, for some functor T; (iwv)
implies that, if ¥ is Pzl w, then tr(r)"—y=2z. From

this, it is not difficult to derive the result that
tr(r) vly and, therefore, by means of Theorem 10.14, that
I' would be inconsistent”.

On the other hand, if the origin of b, =b, is x =Qy,

then the origin of b, =b, , can not be Qy=x, in view of

Theorem 10.2. There remain, then, two alternatives:

(a) The origin of bk:bkﬂ and b, =5, ., is x = Qy:
in this case, tr(r)’I==TQy=35w, for some functor T, and, by
Theorem 5.3 and 5.4, tr(r)’l-—y=Vw, for some functor V.
Furthermore, either tr{f) == Rz =Ux (if 7 is zllw) or
tr(T)"1——RPz=Ux (if 7 is Pzl w), for some functor U. since

tr(r) - Rzl Vw (when 7 is zlw) or tr(l) F- RPz Il Vw (when
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v is Pz llw), it follows that tx(l) F Uxfly and, therefore,

that tr(l') F— PUxlly; but the version of PUxfy 1is Oxy.

(b) The origin of b, =b, ., and b, =Db, is Qy=x%; in
this case, tr(l)’|l~—Ux=3Sw, for some functor U. However,
v cannot be Pzl w, because otherwise we would have
£r(F)* -~ RPz = TQy, for some functor T, and this is absurd
by Theorems 5.3 and 5.4, taking into account that P and Q are
distinct simple functors which do not occur in any element of
tr(F)". We have, then, that 7 is zlw and, consequently,
that tr(T)'l— Rz=TQy, for some functor T. By Theorems 5.3
and 5.4, tr(F)'l-Ly= Vz, for some functor V. Since
tr(l) F= Yz | Sw, it follows that tr(T) F- Ux Il y and, there-
fore, that tr(l) F— PUx |l y; but the version of PUxlly is

Oxy .

THEOREM 70.76. Given the conditions of Theorem 10.15:

if  tr(l),tr(Ixy) F- a=a, then ¢tr(l) xly.

Proo4. If tr(l),tr(Ixy) F~ a=a we show, by analogy
with the proof of Thecrem 10.15, that Ixy#[ , that there
exists a negative element 7 in tr(l) for which
tr(PUiIxyr) . 7y - a=a and that there are functors R and S
for which, if ¥ is zllw, thnen tr(lU{Ixy})’ -~ Rz = Sw, and
if v is Pz lw, then tr(lfv{Ixyl})’ = RPz = Sw. Thus there
exists a strictly tr(lu {Ixy})-regular sequence b,,b,,-/D
such that b, 1is Rz (if v is zllw) or b, is RPz (if 7 is
Pz ll w), bn is Sw and some j (1<j<m) is such that the

origin of bj =bj+1 is tr(Ixy) or a converse of tr(Ixy).
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By Theorems 10.2 and 10.3 there exists just one j which sat-

isfies these conditions, because tr(Ixy) is Qx=Ty, for

simple functors Q and T that do not occur in any element of
tr(F). Since tr(N)'= b, =b; and by is U0x or by is UTy,
for some functor U, we deduce that 7 cannot be Pzl y; other-
wise, we would have that tr(I')I=—RPz =UQx or tr(Tl)’ =~ RPz=UTy,
where P, Q and T are distinct simple functors, with P differ-
ent from Q, which do not occur in any element of tr(l)’, and
this is absurd, by Theorems 5.3 and 5.4. Therefore, 7 has

the form zllw and b, is Rz. We then have two alternatives:

(a) The origin of bj =bj+1 is Qx=Ty: in this case,
we have tr{l")'-i—'— Rz=UQx and tr(l)” == VTy = Sw, for some
functors U and V. By Theorems 5.3 and 5.4, we have that, for
functors M and N, tx(l)° I~ x=Mz and tr(l) I—y=Nw; but

£r(F) F= Mz i UNw, and tr(F) I —x|y.

{(b) The origin of bj=bj+1 is Ty =0Qx: the procof is

similar to that of the preceding case.

THEQREM 10.17. TU{B} is a set of formulas of I,.
P~ § if, and only if, either there exists a term a of [
such that tr(l)l— aia or there exists a formula o of [

such that B8 is a version of « and tr(l) — a.

THEOREM 10.15. Given the hypothesis of Theorem 10.17:
F— g if, and only if, there exists a term a of [ such
that ¢tr(F) — alia or there exists a formula @ of [ such

that f is a version of « and tr(T) o,
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Proof. Taking into account Theorems 8.1 and 10.17, we
only have to show the 'only if' part of the present theorem.
1f T+ f§, there exists a finite subset & of [ such that the
pair (f,5) has a proof in the indirect system. If we show
that tr(A) Falla, for some a of L, or tr(a) = o« for
some a of L such that B is a version of «, the proof is com-

lete because tr.(A) ctr(l).

We prove, by induction on a proof of (f,A) in the in-
direct system, that tr(2) F— all a for some a of I, or
tr(A) -« for some @« such that B is a version of «. The
sole non-trivial case of the induction is that in which we
suppose that the pair (f,a) is obtained from previous pairs
(y,au{C(B)}) and (C(y), AU {C(B)}). By the induction hy-
pothesis either there is an a such that tr{a),tx(CE)) — all a
or there exists a formula 4 and a formula = of £ such that:
~ is a version of u, C(y} is a version of 7,
tr(A),tr(C()) F u, and tr(d),tr(C(E)) 7. We may suppose
that 7 is positive. There are then two subcases: (i) K 1is
of the form x=0Qy and 7 is of the form Pxll y, where P
and Q are non-empty functors; (ii) u has the form Px = Qy
and 7 has the form x|y, where P and ( are non-empty func-
tors. In both subcases, we have that tr(A), e (CE)) — Px Il Px.

So, in any case there is an a such that tr(m,tr(C(ﬁ))*'L all a.

If C(B) is positive, then trid) = a, for some « such that
f is a version of &, by Theorems 10.15 and 10.16. Let C(B)
then be negative: 1if & 1is inconsistent®, then our final

conclusion follows from Theorem 10.14. Let us suppose that &
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is consistent®: we conclude that C(B) ¢ A, because otherwise
we would have that tr(4) — Px |l Px and this is incompatible
with the consistency® of &,by Theorem 10.14. But Theorem 5.2
assures us that there exists a negative formula ¢ such that
getr(A) U {tr(C(B))} and tr(a)’,v H Pxll Px. If vetrid),
then we would have that tr(4) F Px |l Px, and this is impos-
sible. Thus, tr(A)", tr(C(B)) M Pxll Px. By Theorems 10.12
and 10.13, there exists a formula « of £ such that § is a

version of a« and  tr(a) —a.

THEOREM 10.19. Let TFuU{f} be a set of formulas of Li .

r—gpg if, and only if, r—s.

Proof. By Theorems 10.17 and 10.18.

COROLLARY 1. I is consistent if, and only if, I is con-

sistent”.

COROLLARY 2. T F-3 if, and only if, [ implies §.

Every simple functor of L has the form Pj or the form
Qj’ for some numerical subscript j. For each simple functor
of form Pj and each interpretation ¥ of £,, we define a
function TPj, whose domain is the set of the non-empty sub-

sets of the set U{h: there exists a simple term x such that

. 1 P -
h = J(x)). Let us call this last set @ . We then define 3 J

by the following clauses: 1) if there are simple terms x and
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y such that Oxy is the j-th formula of £, 3(x) £ 3(y), and
k = ¥(x), then ?Pj (k) = F(x) - F(y); 2) if there exist simple
terms x and y such that Ixy is the j-th formula of Ly,
) M Tiy) #4, and k=73, then T3 (k) = Tx) 0 Fy)s

P.
3) otherwise, 77 (k)=k.

For each si.p.ple functor of form QJ. and for each inter-
pretation ¥ of £, we define a function ‘.;Qj , whose domain
is also the set on the non-empty subsets of g’ , by the
clauses: 1) if there exist simple terms x and ¥y such that
Axy is the j-th formula of L, 7F(x) S¥(y), and k = Tyl
then ?Qj (k) =F(x); 2) if there are simple terms x and vy
such that Ixy is the j-th formula of £, T(x)N7(y) # 9,
and k=7(y), then 39 (k)=7F(x)Nn3(y); ~ 3) otherwise,

79 () =k.

Let 3 be any interpretation of {:. For all natural num-
bers j, EPj and TQj are restrictive functions on 6’ . Now,
consider the ordered pair whose first coordinate is 6’ and
whose second coordinate is the function which associates the
set 3J(x) with each simple term x of L, and the functicn }R
with each simple functor R of L. Such a pair is clearly an

interpretation of L, which we shall denote by r

THEOREM 10.20. T' is a set of formulas of L, and 3 is an
interpretation of £i. If ¥ is a model of ', then 17 is a
model of tr(l).

Proog. Let 7 be a model of I'. Let {§ be an element of

tr(T) and « the element of T such that B is tri«). We
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have four cases:
(i) o is Axy, B is x=Qy: we have F(x) € F(y) and
Q‘
Axy is the j-th formula of f,. Thus, FI(Fy)) = Fx), i.e.,
170,y = 1%x), and 1%(8)=1.
(ii) « is 1Ixy, £ is ij=ij: we have that
F(x) 0 F(y) #¢ and Ixy is the j-th formula of Li. There-
Q Ps
fore, TFI(F(ly))=F(x)nF(y)=7 J(%(x)). Consequently,
3 T
Ppx) = 1 Q) and 176) =1.
(iii) « is oOxy, § is ijlly: F(x) £ F(y) and Oxy is

P
the j-th formula of Li. Thus, 7T7{7(x))=7(x) - Fly), i.e.,

1’(p.x0 = 3x) - 3(y), and TP x0 17 y) = 0. Therefore,
17 = 1.
(iv) « is Exy, 8 is xll y: F(x) N3ly) = 9, i.e.,

7 7 7
I (x)nI (y) =¢, and I {f) = 1.

THEOREM 10.21. T is a set of formulas of Ly; B is a

formula of £;, and o is a formula of £, such that f is a

version of «. If tr(r) implies «, then T implies B .
Proof. Let 3 be a model of I'. By Theorem 10.20, 7
is a model of tr(l) and, then, 17 (@) =1. We have four

cases: (i) g is BAxy, o is of the form x=Ry: by the defi-
nition of an interpretation of [, Ux)cl’ty)s that 1is,

Fi(x) C Fly) and TF(B)=1.

(1i) B8 is 1Ixy, @ is of the form S5x=Ry: we have
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that I°(x) N 17 (y) #é; that is, F(x) NF(y) #¢ and 7T(F) =1.

The other cases can be similarly treated.

THEQREM 10.27. Let TU{B} be a set of formulas of L;.
I' implies § if, and only if, there exists a formula « of £

such that f is a version of a and tr(l') implies a.

Proo4. Given Theorem 10.21, it only remains f.or us to
prove the only-if-part. If I' implies #, then by Theorem 10.19,
' —§. By Theorem 10.18, we have two possibilities: (i) there
exists a formula « of L such that 3 is a version of & and
tr(T) M «; in this hypothesis, tr(l') implies «, by the
completeness theorem for the strong algebraic system, because
any deduction of the weak algebraic system is cbviously also
a deduction of the strong system; (ii) there exists a term
a of L such that tr(F) —alla; thus, tr(l) — alia and,
by the rule of trivialization, tr(l') — o, for any formula
@ of £, and tr(l') vacuously implies @, for any formula o of
L. Hence, tr(l') implies tr(f), where f is a version of

tx(f).

THEOREM 10.23. Given the conditions of Theorem 10.22:
F—§ if, and only if, there exists a formula « of [ such

that f is a version of « and tr(l) — a .

Proof. By Theorem 10.22 and the completeness theorems

for the Aristotelian system and strong algebraic system.

REMARK. The authors would like to thank Prof. John Corcoran for his val-
uable criticisms and suggestions concerming the first draft of this paper.

h2



REFERENCES

ARISTOTLE, Padlon and Postendonr Analytics, Oxford, 1949.

CLAIR, P. and F. GIRBAL [1965] (eds.). te Logique de Port
Royal (A. Arnould and P. Nicole, La Looigque ou L£'Axt de

Pensenr), Presses Universitaires de France, Paris.

CORCORAN, J. [1972], “"Completeness of an ancient logic”,
Journal of Symbolic Logic 37, 696-702.

CORCORAN, J. [1973], "A mathematical model of Aristotle's
syllogistic", Aachdiv §iin Geschichte de Phifosophie 55,
191-219.

CORCORAN, J. [1974al, "Aristotle's natural deduction
system”, in Corcoran 1974b , 85-131.

CORCORAN, J. [1974b] {ed.), Ancdent Logic nd its Medenn

Tnterpretations, Reidel, Dordrecht.

HAMILTON, W. [1867], Lactures on Legic, ed. H.J. Mansel & J.
Vertch, Gould & Lincoln, Boston.

LUKASIEWICZ, J. [1957], Anistotle's Sylleaistic, Oxford

University Press, Oxiord.

43












