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ON THE SILLOGISM . I

Newton C. A. da Costa/USP

Luiz H. Lopes dos Santos/USP

Elias H . Alves/0r/ll'Cll/UNICAHP

I NTRODUCT I ON

The present paper is the first of a series devoted to tle
theory of tbe syllogisn. In this series. we plan to study
topics such as the following: 1) 'rwo algebraic systems re-
].cited to the Aristotelian syllogistic; 2) Some basic proper '
ties of two formalizations of the categorical syllogistic, one

of whi.ch is essentially Corcoran's (see Corcoran [1972] , [1973]

[1974a] and t1974b]); 3) The doctrine of the quantified predi.-
cate, and certain logical systens connected with tianilton's

conception of the syllogistic, as presented in his New Ana-

Zg.tfca (see Hanilton [1867}).

In this papers we construct two systems appropriate to dle

study ol categorical propositions by means of algebraic
operations and relations . In our systeilts. predicates are quan-

tified in the spirit of Book.e's we].l-known method of indeter-
minate coefficients. We also consider two formulations of

Aristotle's syllogisticP and then investigate the foul' sys-
tems . tleatlng their interrelations . fundamental properties.

and semantical counterpar ts .



Our results are nalnly concerned with natal'al deduct.ive

formulations of the sylloglstlc systens Considered. As Cor-
coran and otbel's have shown, this method or presentatJ.on

captures better the gist of the sylloglsn. at least in the
A=lstotellan case. However. our exposition can be adapted to
other methods of formalization. for lilstance that of Lukasie-

wicz (see Lukasiewi.cz [19S71) .

To gi.ve an idea of c>ur pxograaian, let us call poa flue

tbe categox'i.cal propositions of the f arms A and 1 . and Beg-
at pe those of the torIEs E and O. If I ' is a set of cate-

gorical pz'opositlons, we denote by I '' the set of positive

propositions in I'. We show, f or examples that in Corcoran's

systematizati.on of the syllogisn, if r is a const.stent set

of propose.toons, a is a positive proposition. and I' +' a
then I'++-- a. Furthermore, if f i.s a negative proposition
and I' F-- P, then t=here is a negate.ve proposition '€ 1',

such that r' ,7 f"-- P . Another important poi.nt: Corcoran's

system conte i.ns both affect and fndfpeat deductions, i.e. it

includes, in a cereal.n sense (see Corcoran [1974a] , pp. 116-117),

the rule of reductio ad absurdum. In order to obtain a nolte

perfect understanding of the format i.nterp]ay of the ru].es

enp[oyed. we formal.ate a dfz'ec?t sy]].ogistic system. equi.valent
to Corcoran ' s .

Soundness and completeness tbeolems are proved for all

systems Into'oduced, lelatlve to their Intended semantics .

The rules of our direct verdi.on of the syllogistlc which

nay be applied in a deduction Eton a consistent set of formu-

2



las are just those equJ.Talent to some of the traditional.
rules for Immediate Inferences and comiuon sylloglsms. There-

fore, the completeness theorem which is proved for this ver-
sion is the forlaal vindication of a belief shared by iu)st of
the traditional. logicians: that any valid inference of a cat-

egorical statement fran a (consistent) set or category.cal

prenisses can be reduced to a chain or ilamediate Inferences
and coinnon syllogisns (cf. Ari.Beatle. Pa..foa AnaZy.t£c.6 , 1, 23

and La Logfque de Foaf Royal. lll, I)

Most of tbe results considered here vi]]. be enployed and

exploited in the forthcoming papers of the series .



1 . TH£ ALGEBRAIC LANGUAGE £

The vocabtt.ea.t# of f I.s composed of the fella'ing sym-

bols: 1) an Infinitely denulaerable set or afapZe 'tc£n.6; 2) a
set of a.&tpZe 6aac.toad (the ]ettus 'P ' and 'Q ' with nunez'ical

subscrlpts): 3) tbe symbols ';' aad 'H '. The teanaf dunc-

to.t.6 , and ivana.Ca.6 Of .C are deli.ned by the follaing rules:

1) Every simple term is a teen; 2) if a is a term and

P is a staple functor, then Pa is a term; 3) if a and b are
terms, then a=6 is a (p04'fffue) f araBIa and aEb is a

(Kegs.tfve) f orau].a;. 4) if P is a finite sequence of n sim-
ple functors (a>O), P is a finctor; \h.en a-O, P is tbe
empty functor.

Unless explicit mention is made to the CQnt='aryr the last
small. ].ati.n Letters wi].I be employed as variables f or si.nple
terms, and the first sma]]. bali.n letters will be used as var-

iables far terms in general. capital. Lab.a betters wi.]]. stand
as variables f or functors in genes'a] and, fiiLa].ly. small Greek

Letters wi].] be used as variables for f oruulas .

A f oz'musa of f orm Pa =Pb is called an .a{6lance of the

foxnula a=b. If a is an instance c>f fi and f i.s not an

Instance of any other formula, then f is said to be the OJt.i-

gfK of a. It is clear that any formula has one and only one
origin.

The f ornu]a a=b i.s ca]].ed the convex,ae of b =a.
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Let [' denote a set or fornu].as; then 1" will denote

tbe set of positive formulas which belong to I '.

2 . INTERPRETATIONS OF £

A function F is said to be 4.c4.t4fcffvc OH a ael u if

and only If: 1) U is not empty; 11) the domain of F is the
set of all nonenpty subsets of U; 111) for every x in the
domain of F. F(x) gx and F(x) is not empty.

An interpretation of f is an ordered pa i.r <U,]) . where

U is an nonenpty set and ] is a function which associates

with each single term of f a nonempty subset of U . and to

each sinp].e functor of f a restrictive function on U

Let I be an interpretation <U,]> of .t. We deli.ne the

value I(z) of z according to 1, the value I(P) of the
simple functor P according to 1. the value I(a) of the term
a according to 1, and the value I(a) of a formula a ac-
cording to 1, respectively, as fo]]ows: ]) ](Z) : ](z);
2) 1(P)=](P); 3) 1(Pa) = 1(P)(I(a)); 4) 1(a:b):]. when

I(a)=1(b)i I(a=b)=0 otherwise; 5) 1(atlb)=1 when

t(a)nl(b)= +; 1(all b)=0 otherwiso.

We define the tears mode.C and I.mpZf.call,on as usual
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3 TH£ STRONG ALG£BRAIC SYSTEM

H define the 6f.toitg aZgebxa.ic ag.6.ten as follows: lts
language is .C and lts axlcxns aad rules are those listed be-

Axi.(ns (of Identity) : a = a

Hale of positive conversion {or of s.innetry)

nile of traasitivi.ty:

Rule of positive instantiation: -Ff;'pF-

Ru[e of ansi.ni.].anon: --elba 's a

aUb
Rule of negative converse.on : --t"r a
Rule of substitution:

Rule of tziviali.kati.on : -!Lll- a

a=b

We define, in the usual way, siren one formula is deducf-

b.Ce from a set of formulas in our system (+--). If a set of
fa=mulas is such that any formula vhatevez ' is deduct.ble fz'on

it, tb.e set is ca]].ed fluid.iaZ or iacwt.a.i&.tent; otherwise, the
set is said to be con.6£4.ten.t.

We can east.]y prove the foil.wing derived rules:
a= Pb 0a =b

RDa : -'f=.JIZ---!--. where P is obtained rhoda a by the re-
placement af one occurrence af c by oae occur'Fence of
d
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We note that we obtain systems equivalent to the one
have If: 1) ve replace the rule of assimilation by RDt; 2) we

replace the rules of positive conversion. transltlvlty, posi-
tive instanclation and substitution by ROa .

4 C014PLETENESS OF THE STRONG ALGEBRAIC SYSTEM

Let a be a term and I ' a set of formulas. We put:

{b: '!here exists a functor R such that r't-- b Ural' U

{€b,c> : 1'1--+' bile and there exists a functor R such that
I' F-- b = Ra or I ' t-- c = Ra

Obvious].y, a € a

We shall denote by + the set of terms of f

If P is a functor , we put:

{lu,t} : Either (i) there exists a term b such that

:6r and t= (Pb)r, or (ii} u i.s a nonempty subset of

PU (+xyP) and u=t, and there is no tent b audi that
b' } .

Pr

THEOREMS.1. If ar=br, then rl a:b.

Pa.oo{. Let us suppose that ar=br. Thus. abbr and
b€ ar, and therefore there are functors R and S such that
rt- a=Rb and I ' f-- b=Sa. By the rule of conversion and

RDi , we conclude that I ' b"' a = b
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THEOREM 4.!. 1'1-- a=b entails €''ub

Pa.oo6. 1.et us suppose that rt"' a=b. If c is a term

suet that ee ar, then thee'e exists a functor R satisfying
tbe condition I't-- aURa; theres OI'e. by RDz. I'l- carb ,
and cc for. On the other hand, i.f (e,d} is a pair of terms

such that {c.d>car. their , I'l--+- cll d and there is a func-
tor R such that ' I'l-- cara or I't- dora. By
I't-- carb or I'F-- d=Rb. Thus. {.efd>eb ' and,

queatly, ar Sbr. Ainlogously, for Slap

THEOREM 4. 3. (Pa) ' g a '

Pa.oo{. Immediate. taking into accoixilt the define.ti.ons

of (Pa)' and a '

THEOREM 4.4. pr is a restrictive function on tbe set

+U (+ x +) .

Paoo{. We easily show (with the help of Theorem 4.2)

that Pr is a functi.on. and clearly tbe dana i.n of P ' is the
set of all nonenpty subsets of g'U(+x+). . Bloreover, if
(u,.t>ePr, then tSU (by Theorem 4.3) and u+d.

Let I' be a set of formulas and let 7 be a functi.on

ldtich associates with each simple term x of .C the set x
and with each simple functor P of f the set pr. The pai.I'

(+u (P x 8r) ,7) consti.tubes an interpretation of .C which

sba].I denote by I

r

r
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T+f EOR£M 4 . 5 . 1' (a)
r

a

P.hood. By induction on the ].ength of a. If a is a si.m-
ole.term. then by definition lr(a) :Qr. I.et us suppose that
a has the form Pb. where P is a simple functor. By deli.-

nation, lrtPb) =Pr(lr(b)); but lr(b) =br. by the induction

hypothesis and, by definition, pr(6r) = (pb)r

THEOREM 4.6. Let I' be a consistent set of formulas of
r; ]'t--- a]]b if, andon].y if, arnbr=e.

Pa.ood. let us suppose that I'F#-" alla; it is easily
verifiable that {a,b>ear and (a..b>eb

Now, let c bea term such that gear and cebr. By
definition, there are functors R and S such that rl ' cara
and I'l-- c=Sb; hence, Fl-- Ra=S6. Ulerefore, rl-+ Rail Sbp

since I' is supposed to be consistent; but the formula Ra ll Sb
can be derived from a ll b, and thus we conch.ude that I' t"+ alla

Finally, let c and d be terms such that <c,d>ear and

{ c, d > € b ' . By definition:

(1) r l-'+ c ll d;

(ii) there is a functor R such that rl ' cara
r F-- d = Ra;

(iil} there is a functor S such that I'l-- cash
r i d: sb

Now, from (i.I) and (iii) we conclude that one of the follow

ing alternatives obtains :



(1) I' 1-- Ra = Sb

(ll} I ' b-- c = Ra and d = Sb

(111) I ' }-- d = Ra and c : Sb.

As we have seen above, (1) is ruled out by the assuioed con-

sistency of I '. Pron (11) and (1), as well as fran (111) and

(1), we conclude that I't+ Ra U Sb; but thj.s formula can be
derived frcKn alb. Hence. I'l'#- alb

THEORE1{ 4.7. If I ' is a consistent set of formulas of
f. then I'f"'a if, and only if. I ' (a):l.

Pa.oo6. By Theorems 4.1, 4.2/ 4.5 and 4.6.

7'HEaRtH 4.8. (Completeness). I't"-- a if, auld only iff

I' implies a

p.took. If I't--a , then. by induction on tbe length of
a deducts.on of a from I ', we prove that I' inplles a. Let

us suppose that I' implies ai if I ' is incoiuistent. then
rb- a ; if I' is const.stent. then lr is a model of I ' {The
orem 4.7) and, Consequently, lr(a) :l; by Theorem 4.7,
r t-- a

THEOREM 4.9. (C(mpleteness. second version) . I' is coa

sistent if. and only if. it has a model.

P.toad. By Theorems 4.7 and 4.8.
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We remark that our algebralc system may be easily shown

to be decldable, by means of an i.nterpretatlon in the first-
order noiudlc predicate ca]cu].us .

THE WEAK ALGEBRA IC SYSTEM

The weak a.ege.ba.a£c 4g6.teH has as lts underlying language

the language lr and includes, besides the axioms of identi.ty
the rules of positive conversion. transitivlty, posits.ve in-
stantiation. negative conversion and substi.tution.

We define as usual the concept of deducfbf&f.tg of a for-
mula a from a set of formal.as r (and write I'l-=-a) in the

weak algebraic systen. we can shaw that RDi is also a de-
rived rule in our new system.

THEOREM 5.7. 1'1-l a=b entails I''h:-a=b

Pa.ooi. By induction on the ].ength of a deduction of a=b

THEOREM 5.Z. If I't-- alla, then there exists a nega-

fornula 6 such that 1",6 1.- all b

Pa.oo6. By Induction on the lengUI or a deduction of
a ll b from r.



TFfEOREH 5.3. Let tu suppose that S is a simple functox'

which does not occur in any element of I''. If I''.}-=a=b
then either S does not occur in a=b or S occurs both in

a and b.

Pa.ood. By Induction on the length of the deduction of
a b from 1", nader the proviso tllat S does not occur in
any element of I '

TlfEOREH 5.4. Let S be a simple functox whi.ch does not
occur' in any element of I'U {aJUtb}. If I'' }f- RSa=TSb,

then I" l-f a = b .

Pa,ood. By induction cui a deduction of RSa=TSb from r'
with the help of Theorem S. 3.

T+fEOREN S.S. If I",clef'f aHb, then there exist
ftxnctors S and T such that either r' }-- a=Sc and
I'' F=- b=Td or 1" b=- a=Sd and I ' F'Z b=Tc.

Paoo4. By Inducti.oa on a dedlactlon of a ll b flan
I' u {c ll d}.

DEFINITION. I' will denote a set of formulas of f. A

sequence al,a2,''''aa (b>1) of terms is said to be I '-4eg-

u.,Ca.t i.f. f OI all j (l<j<a), the formula aj=aj+l is aa
axiom, or an instance of a member of I ', or an Instance of the
converse of a member of I'. Mien, f or any j and k

(].<J<k<n)p terms aj and ak al'e different, we say that
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the sequence is 4flt.fc.tflg I'-xegu.Caa. Obviously, a sequence is
I'-regular if, and only i.f, it is I" -regular.

THEOREM 5.6. 1' t-=- b=c if, and only if, there exists a

I'-regular sequence al,a2,''''a such that al is b and aa

Pa.ao6. We easily prove by induction on a that, if

al'a2'''''a i.s I ' regular, then I'l-!' al:an ' if I't-=- bac,
[t is a].so easy to show, by induction on the length of 'a de-
duction Qf b= c from I ', that there is a sequence alpa2r'''4a

lehigh is I'-regular and such that al is b and ati i.s c

i.s C

THEOREl1 5.7. Let b and c be two different terms

F }-= b =c if, and only if, there is a strictly I'-regular se-

quence dt'dZ'.",dt in which dl is b and dk is c

P.toad. Taking into account Theorem 5.6, it is suffi-
cient to prove that, if al'a2'"''aa is a I'-regular sequence

such that ax and a. are two different terms, then there ex-
ists a strictly I'-regular sequence dt'd2'"-,dt in which al

is dl and aa is dk ' This may be proved by induction on ti
When al,a2'"''an is strict].y I ' Blair there is nothing to
be proved. Now, let us suppose that al and aa are not e-

qual, and ' that al,a2,"''aa is not strictly I'-regular. but
only I ' regular. t:le consider the least number j such that
there exists a number k whi.ch satisfies the inequalities

i<j<t, and aj is ak ' Three possibilities are then open

to us: (i) jnt; j.n this case. evidently k<a, ak'ak+l'"''au



Is I ' regular, and at is al; ve complete the prc>of by tbe
application of the Inductive hypothesis; (11) j+'l and k=a;

J.t is clear that l<j<a, that al'a2'"''aj is I'-regular,
and that a: l8 a.: ue caaplete the proof as in case (1);
(111) j#l and k#'n; in this case we have tint l<j<k<a

and that al,-paj'ak+l'''an is r-regular'; we complete tbe
proof as in tbe .precede.ng cases.

6 THE LANGUAGE .Ct AND ITS INTERPRETATIONS

The vocabulary of ll is composed of tbe simple teens of
f and of tbe lela.tfdK agnbo.ea 'Ae, 'Ee, 'l ' and 'O '. The

formulas of .Ct are expressions whi.ch consist or one relate.on

sylabol followed by tvo di.stinct simple teens . Unless explicit
naitlon is Bade to the contrary. the ]ast sna]]. Latin letters
vi.].] be used as variab].es foz: (staple) terms. and small Greek

Letters vi]]. denote fOrnu]as .

Formulas of tbe Earns A)q and lxy wi.ll be called poaf-
.tfvc, and the others itega.tfve. If I ' is a set of formulas of

ZI. then 1" vi.ll denote the set of positive formulas that
belong to I '.

Fox any formula a of .Ct. ve define the coa.ta.adfcfo y
of a. C(a). as faItHs: (1) C(Axy) Waxy; (J.I) C(Oxy) waxy:

(iil) C(£xy) = lxy; (lv) C(lxy) sexy.

An interpretation of .Ct is a function from the set of
terms of .Ci into a collection of non-empty sets. If T is an



Interpretation or Ct, one defines the value T(a) of a fot-
nula a.by theclauses: (1) ?(Axy)nl if, and only if.
}(x)f?(y); (11) T(Exy) =1 if, and only l£. 3(x)nT(y) =+:

(111) J(a)nl if. and only l£, 7(C(a)):O: (IV) }(a) -l if,

and only i.f I T (a) +' 0.

We define i.n the standard way the concepts of a modcf or

a set of formulas and the relation of .&ip.Cfcaf.fait between a
set of formulas and a formula.

7 THE DIRECT ARISTOTELIAN SYSTEM

The d.[a.ec.t Aaf.a.to.teLCan ag.i.tem (of the sy].logistic) has

Zi as its underlying language and possesses the following
ru].es of deduction :

Barbara

Dadi.

Celarent Eyz Axy
Exz

Oxz

Bocardo Oyz AyxBarolo

:-conversion -'l!=- E-'.n«e'si.on -;:l:--

Al-subalternation --#:v Eo-subalte=nation --g:?-

Trivialization C (a )

15



We define, in the usual warp deducfbfZf£g of a formula a
from a set of formuJ.as I ', I.n the direct system (we write
rl-l a). If Ue set of formulas I ' (of .Ct) is such that

I'l-f a f or aay formula a Bfh8tsoeverr we say that I ' !s
facon4.£4.te f } otherwise. I ' l$ said to be ealtafla.teal '

Qbvlous[y, the va]]d modes of the A=']stote]]an s£'].].og]sm

are vail.d deducUon rules of the di='ect system.

It is not difficult to see that, if thee'e exists a de-
ducts.on of a formula a fran the set I' where the rule of

triviali.kati.on is enployedf then there exists a deduction of

from I' where this rule is employed only c>nce.

THEOREA1 7.1. 1' and a are a set of formulas of li and a

positive formula. x'espectively. If there exi.sts a deduction

or a from I ' in the di.x'ect systeaa in which the rule of triv-
ializatlon is not used, then r ' 1"!- a.

By induction on tbe length of deductions

COROLLARY. If I' is a const.stent ' set of f ormulas and a
is a posits.ve formula. then ve have: I' }' a entails I''l-=-a.

THEOREM 7.2. 1' is a set of formulas and a is a negative

formula. If I' 1"= a. then Chez'e exists a negative formula P

such that P € 1' and I' .P I'-t a

Paood. Suppose that a is negate.ve and Fl-'!'a . It i.s

t6



not difficult to see that theme l$ a deduction of a fran I '
in which the rule of tl'lvlallzation is not emp16yed or is em-

ployed just once,precisely in order to justify the one and
only occurrence of a in the deduction. The theoren may .be
tz'ivia].ly proved by Induction on the length of this kind of
deduct ion .

COROLLARY T . r' i-= entails that a is positive

COROLI.ARy 2. r ' i.s consistent

TlfEOREM 7.3. r ' is a set of formulas of Zi - r ' }-- Axy

if, and only ifr there exists a sequence of distinct terms

Zl+z2r"''zB satisfying the fc>llowing conditions: ZI iS Xr Ztt
is y. and. foz: any j such that l<j<u, A.zjzj+lel'

pa.oo6. Suppose there is a sequence zl'z2'"''za such as
described in the theorem. We show easily, by induction on ar

that r'l'Azlza ' Now. suppose that l"l=-Axy; first we
prove that there is a sequence of terms, not necessari].y dis-
tinct. z. ,z?,.-.r which satisfies the three condi.toons for-
nulated in the theorem. Finally, we complete the proof by

induction on the number of terms of this sequence which occur
more than once in it, i.n a way sinilar to the one enployed in

the«proof of 'theorem S.7 .

If r is a set of formulas. we shall represent by I'A the

set of elements of r having the form Axy.
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TffEOREH 7.4. 1' is a set of formulas c>f f

if , and only !f , I'a }-!' Azw.

1- }-:- Azw

P.to o 6 TrIvIal with the help or Theorem 7 .3

T+fEaREH 7.5. If I ' is a set of f ormulas of li and

r',Axy, Ayxl'Azv, then I",Axy F'Azv or I'',Ayx I'Azw .

Paoo{. Let us suppose that r',.hxy, Ayx I'--Azw; by The-
orem 7.3. there exists a sequence of distinct terms

zl,z2'-''zn ' where zl is z. za is w. and, for every j,
l<j<n, Azjzj+t belongs to r '' U{Axy,Ayx}. We xepzesent
by A tbe set {P: theme is a j such that l<j<a and P is

Azjzj+lJ ' We prove. by i.nduction on a, that A l-'=Azlza ' I.
A f--Azw. But since z.rz,),-..,z. al'e di.stinct terms, it

fold.ows that either Axy#A or Ayx+A. However',

agr ' U{AXyeAVX} ; theres ore. A g 1" U{Axy} or

A g r ' u {Ayx} , and so the theorem is proved.

T+fEORElf 7.6. 1' is a set of formulas of f!. If I''l'lxy
and I'at'f''' lxy, then there exi.st teens z and w such that
lzve I' axd ['l,]zw }"' ]xy.

Pa.ood. By induction on the length of a deduction of lxy
from r '

TlfEOR£M 7./. Given the set of formulas I '. If

1",Axyt''lAzY and r'l'+Azw. then ve }uve: (1) either x is
z or r'l-=Azx; (J.I) either y is w o= r'l-=Ayw.
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Pa.aod. By Induction on the length of a deducts.oa of Azw

from I '' V {Axy} .

THEOREM 7.8. Given the set of f ornulas I', if
1",Axy }"' lzw and I''l-;lzw, then we have:
either (1) 1''1-=-lzx, if x is not z, and l"l"=Ayv, if y

is not v. or (11) 1"t-!-lwx, i.f x i.s aot w, and

r' l-'!- Ayz. if y is not z.

Pa.oo{. We proceed by induction on the length of a de-
ducts.on of lzw from r" U {Axy}. I,et us assune that l"l'-;-lzw.

If the formula lzw is derived from Azw .In the deduction.

then we prove the theorem with the help of Theoren 7.7, for
the initial assumption implies that I ' }'raze. If lzw is de-
rived from lwz , the theorem fo]].ows trivially from the in-

duction hypothesis. SO. let lzw be derived in the deduction

by means of the rule DARla. By the i.nducti.on hypothesis,
there is a tem t such that r ', Axy f' lzt and I",Axy }' Atw.

Obviouslyr oul' initial assumption ensue'es that r ' l-p lzt or
I'' 1-;- Atw. There remain three cases to be considered:

(a) I''l"Frat and l"l.--Atw; in this case the theorem

is easily derivable by means of the Inducti.on hypothesis.

(b) l"l-='lzt and I''le'-Atw; in this case the theoz'em

is easily derlvable, with the help of Theorem 7.7

(c) l"t';"lzt and r"l-;"Atw; by the induction hypoth-
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elthe=' (1) 1' 1'=' lzx (i,f
y is not t)

or (J.I) r ' }'='- ltx (if

y l$ not z)

Moreover. by Theorem 7.7, we have: (111) I''l'Ayw.
Nov, (11) and (Ifl) Imply that I''l-:- lzw. levi.ch contladlcts
our !nitlal assumption. So. the altenuti.ve (1) obtains; but

(1) and (111) prove tbe tbeo=en.

i.s not x) and r ' l-'= Ayt (if

i.s aot x) and I' l-'= Ayz (j.f

THEOREM 7.9. 1' is a set of foxnulas of ll.
1", Axy, Ayx I '!" lzv, then either I '. Axy F'f lzv or

F', A}'x l":- lzw

If

P.toad. By induction on the ].ength of a deduction or lzw

from I",Axy,Ayx. If layer ', then the theorem is trivi-
ally provab].e. If lzw is derived in the deduction by con-
verse.on oz subaltenution. then the theoz'em is easily provable

by means of the inducti.on hypothesis or Theorem 7.5, respec '
ti.rely. Let us assume that lzw is dez'iced i.n the deduction

by DARla. There is a term t such that I",Axyr Ayx I'Atw
alla I'';Axyf Ayx l"'L lzt. In view of the inducti.on hypothesis
and Theorem 7.S, there are four cases to be considered

(a)

(b)

(c)

I'', Axy 1-= Atv and

r', Axy l""= lav.

I', Ayx }' Atw and

r', Ayx }' law.
1", Ayx f' Atv and

r', Axy I'=' lzt obviously

r', Ayx }' lzt obviously

1", Axy t' lzt i.f r' l-=- lzt
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F'l--!-Atw, then the theoren can be proved a$ it vas in

(a) and (b) above; soi ].et l"l#-lzt and I''l'+''Atw. By
Theoren 7.S, we have: (1) 1"1-'LAxw (if x is not v) and
(11) 1''1-'LACY (if t i.s not y). Now let I''l-:-lzx or
x be z; by (1), l"lJ-lzw; but if x is not z and

1"1-+ 1zx, then. by Theorem 7.8, 1"1-'LITE (if x is not
t) and I''l-'Lays (if y i$ not z). Togetherwith (1)
and (li.) . this implies that I" l-'= lzw.

1",AxyF ' Atw and r'.Ayxf ' lzt: in this cased .the

proof is analogous to that of case (c) .

(d)

8 THE INDIRECT ARISTOTELIAN SYSTEM

The indirect Aristotelian systen. essentially that of

Corcoran (cf. corcoran ].972) , is formulated in Zi . A oa,oo6

in it is a fi.nite sequence of ordered pairs <a,I'} . where a
i.s a rormu].a of li and I ' is a finite set of formu].as, such

that: (1) ael '; or (li) there exist two previ.ous pairs in

the sequence, <PsVr> and {'y,Alr where I ' = @uA and a is

obtained from l3 and 7 by 6aabaa.a or Oaa..C,(: or (ii.i) there
exists a formula g such that a is obtained from P by the

rule of l-conversion or by the rule of Al-subalternation, and

the pair <Ptl'} occurs previously in the sequence; or (lv)
there ate two preceding pairs i.n the sequence, <P,0> and

{l,+>, where V: I'u£C(al} and P=C("r).
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If <a,I') is the last pair of a proof in the Indirect

system, this proof is called a proof of {a,r) in the system.

If there exists a p=c>of of <a,I ') and A is a set of fornu-
].as of -Ct sucbb that I'gA, then we say that a is a coltae-

queltce of (or is deduc.Cb.Ce) fxoaa A. and we write: AI'--a.

A set of f ormulas + .Is called incoasi.stent if + }-7 f or any
f ornula 7 qibatsoever; otherwise, + J.s said to be const.stent.

Let I' and A be fInIte sets of formulas of li . We eas-
ily prove that if there exi.sts a proof of (a,J') in the ia
direct system, then there is a proof of (a, rua). There-

fore. If A is flni.te, I'gA and there exi.sts a proof of
<a,I'). then there is also a proof of {a,A). If A is fi-
nite, Al--a if. and only if, theme is a proof of {a,A>

THEOREM 8.1. 1'utah is a set of f ornulas of .C:

I' }-Z a , then I' F-- a .

If

By inducti.on on a proof of a fz(n I '

Tberef ore, the vail.d modes of the Az'i.stotelian syllogi.s
ti.c constitute van.d rules or the indo.leet system.

TflEORE# £.2. If I',al-- P , then I',C(#i) }-- ((a)

Pa.ood. Inmedi.ate.
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9 COMPLETENESS OF THE INDIRECT SYSTEM

I.et r be a set of f ornulas of .Ct . Given tbe term x

ve put:

x(r) : {x} u {y: I ' }-- Ayx} f

and

x(r)Vl€Z,.u): I'l---lzv and {zex(r) u wcx(r))}.

THEOREM 9.1. 1't-Axy if, and only if, xrCyr,' foz
any two distinct teens x and y.

P.toad. (1) 1'f"--Axy and z l$ any element of x(r)i i.f

z is x or y, then obviously zey(r): i.f aot, I'l--Azx and,

by Baabaaa, Fl--Azy, and zey(r); hence x(r) fy(r)
(li) I't--Axy and z and w are such that (z,w>e x ' i th.

by (i.) above, we clearly have that {z,whey ' ? so xr=y '

(j.j.i) if xrgyr, then, since xcxr, we have that xeyt ' and

I' 1-- Axyf if x is not y .

THEOREM 9.2. 1't"-- lxy if, and only if, xrn r ++.l-iwe

and y are disti.nct terms.

P.took. (1) if I'F- lxy. then, by define.tian, <x.ylC Xr

and <x.y>eyr. (li) let x(r)ny(r)++; .there exists a term

z such that zex(r) and zcy(i '); if z is x, then
rt"-Axy and, hence. I'F--lxy (subalternation): if z i.s y,
then r l--Ayx ando therefore. I ' }"--lxy (subalternation and

conversion): if z is neither x nor y, then Ft"'-Azx and

r }"'Azy; so. I ' }"--lxy (Paaap,tf). (lil) Suppose there ax'e
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teens z and v much that <z.v>exr and <z,w>eyr. By def-
inition. rl--lzw, and: (a) zex(r) and zey(r); behave

that I't'--lxy, by (11) above: or (b) wex(r) and v€y(r)
i.n this case, I't--lxy by (il) above; or (c) zex\'/ and

wey(r); if z is x and w is y. we get I't"--lxy; if z is
x and w is not y, we get FF"-lxw and I'l--;ulryr and d)ere

fore I'h--lxy (edit.(f); vl)en z is nc>t x and v J-s y. we
have I ' F"-Azx and I't"-lzyP and I't"--lxy (D£6am£4); when z
is not x and w is not y. then I't"'Azx and I't--Al-ry. mxxs,

since I't--lzv, we have that I't'--lxy (Da C,{p and D£4anX.4);

or (d) Z€y(r) and wex(r); sinilartocase (c). Tocon-

clude, then. rt'lxy if. and on].y ifr x ' ny ' #+

THEOREM 9.3. 1' is a consistent set of formulas oi fl
behave: 1) if I'l'Exy. then xrnyr=+; 2) if I't'Oxy

then xr f y '

P.toad. linmediate.

Let I ' be a consistent set of formulas of Zi . !ge shall

denote by Tr the function which associates with each term x
of li the set xr. This function is an interpretation of it

THEOREA1 9.4. 'rt ' is a model of r whenever r is const.s

P.took. By Theoregas 9.]. to 9.3.

tent

THEcIREH 9.S. If I'b--a, then I' implies

Pxoa5. By induction, in the usual nanne=.
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THEOREM 9.6. 1' is consistent if, and only if, I ' has a
model .

P.ladd. Theorems 9.4 and 9.5.

T+fEOREH g.7. 1'ulc(a)} J.s inconsistent iff and only
if I' F-- a

THEOREM 9 . 8 If I' implies a then I ' l---

10 THE WEAK ALGEBRAIC SYSTEM AND THE ARISTOTELIAN SYSTEMS

We suppose as given an enumeration of the formulas of li-
fter any f ormula a of li we define the fa.a)ta.Call.on o! d iH
f , i.n symbols tr(a). as foil.aws (j i.s the nulltber of a in

the given enumeration): (i.) if a is Axy, then tr(a) is

x=Qiy; (j.i) if cl is lxyf then tr(d) i.s Pjx=Qjy; (ij.j.)
j.f a is Exyr then tr(a) is Elly; (j.V) if a iS OXy,

then tr(a) is Plx ll y.

If r is a set of formu].as of li, we denote by tr(r)
the set of formulas P such that, fol' some element a of r ', ij

i.s tr (a

A formula a of it is sai.d to be a vcts£on of a formula

p of f if: (i) a is n(y and there is a non-empty functox
R of f such that P is x:Ry; or (i.j.) a is lxy andthae
exist two non-empty functors R and S of f such that P is

Rx=Sy; or (lii) a is Exy and P is ally; or (lv) a is
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Oxy and there is a non-.empty functor R of .C such that P is
Rx ll y.

We remark that if I ' i.s a set of formulas of f. , then
tr(r) is a set of f oruulas of f satisfying the condition

that each element a of tr(1') is not an instance of ary ether

f araBIa of f. Therefore. If a.,aa,.-,a. is
a tr(1') lal sequence and l<k<ti, then the origin of

ak ak+l is an elenent of tr(r) or is the converse of an

element of tr(r) 'or is an axion (when ak is ak+l).

TlfEOREM Ja.7. Let I' be a set of formulas of .Ci,

al'a2'"'raR a strictly tr(1')-regal.ar sequence with u> 2. and

k a nuzaber such that l<k<(a-l). If the origin of ak:ak+l
Ls b=c, then the origin of ak+l:ak+2 is nQt c=b

Pa.oo{. Given the condi.ti.ons expressed by the hypothesis

of the theoren, let us suppose that the origin of ak :ak+l is

b=c and that the origin of ak+l:'atk+2 xs c:b. ak:ak+l
is of the form Rb=Rc and ak+l:ak+2 has Ute form Sc=Sb.

But in this case, R is S and, consequently, ak is ak+2

which is absurd. since the sequence is std.elly regular.

TllEOREh1 70:2. r ' denotes a set of formulas of f

al'a2'"''aa is a strictly tr(r)-regular sequence, and xj is
the simple term that occurs in aj(I <j <a). If the origin

of al:a2 has the form xt:Qx2' then for a]]. k, I'Ck<n.

the origin of ak:ak+l has the form xk:Rxk+lp for some

simple functor R .

26



Paoo{. Gi.ven the condi.Lions expressed by tbe hypothesis

of the theorem, let us suppose that the orlgi.n of al : a2 bas
the fo='m xt:Qx2' Given that al i's not a2' we conclude

that Q is a si.mple functor, by the definition of tr(1'); .If
n=2, we have nothing to prove. If a>2, we prove the

theorem by Induction on n; since a2r"'rau is also a seri.ctly

tr(r) -regular sequence, i.t i.s enough to prove that. a2 : a3 has
as its origi.n a formula of f of the form x2:Rx3' for some

si.mple functor . R. By the definition of a seri.ctly regular

sequenced the origin of a2 :a3 is not an axiom. hence it is
an element of tr(1') or the converse of such an element.

Thus. it is ei.thee of the form x2:Rx3, for some simple

functor R, or is of the form Sx2 :bl for scene single func-
tor S. If the origin of a2:a3 is of the fain Sx2:for

where S is a simple functol', since al:a2 isr by hypothe-

sis, aninstanceof xl=Qx7,where Q is a simple

functor. we conclude that Qx2 is Sx2 and. therefore, that
Q is S. However, by the definition of tr(1'), a simple

functor cannot occur in more than one element of tr(1') . We

arrive at the conclusion. then, that Sx2:b is the converse

of x. :Qx7, whi.ch i.s absurd, by Theorem lO.I

THEOREM TO.3. r is a set of f ormulas of .Ct, al'a2'"''an

.s a strictly tr€1')-regular sequence (n)'2) and xi is the
simple term that occurs in ai(l<j <n). If the origin of

al:a2 has the form Pxl:Qx2' where P and Q are two si.m-

ple functors, then the ori.gin of a2 :a3 has the foxx
xo:Rxl for some simple functor R
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Pa.oo{. Analogous to the last part of the proof of Theo

reba 10 . 2 .

REOPEN 7a.4. Given the conditi.oas of Theorem l0.2: if

the origin of al:a2 has the form xt:Qx2' then xl is x
or F h'= Ax.x

Pa.oa6. If the hypothesis or the theorem is satisfied,

let us suppose that the origin of al :a2 has the form
xl:Qx2' By the definition of tr(1'), Axlx2el' and. conse-

quent].y, I ' }"'=Axlx2' When tl: 2f the theorem is proved.
When n>2, we prove the theorem by i.nduction on a. The in-

ducti.on hypothesis and Theorem ].0.2 show that x2 is Xn or

I' l-'= Ax2xn (because a2'"''an is a strictly tr(1') gulag se-
quence or length less than a). If x2 is xn the theorem

.s proved; otherwise, we conclude that I' }"=Axlxn(by Baabaaa)

or x. IS x

n

TtlEOREM l0.5. Given the hypothesis of Theorem l0.2: if

the origin of al:a2 is of the form Pxt=Qx2' where P and
Q are simple functoxs, we have: xl is xa or I'l-'=lxlxa

Pa.oo6. Ana]ogous to the proof of Theorem ].0.4, with the
help of Theorem 10 . 3 and lO .4 .

THEOREM l0.6. Let r ' be a set of formulas of li , x

simple term, and b a term of f . If tr(1') }--x=b, then
is x or b is not a simple term.

Pa.oo6. with the help of Theorems 5.7 and l0.2.
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THEOREM 7a.7. Given the condi.tIeRs of Theorem ].0.2: if

the orIgIn of a].:a2 is of the form Pxl:x2r then xl is
c>r I' t"= lxlxa

Pa.oof. By the definition or tr(F), Ax2xlcr '' hence

r'F- lx.x.. When n:2. the theorem is proved. When R>2P

we reason by inducti.on on n . We have three cases: (a) the

origin o£ a2:a3 has the f orm x2'Qx3 ando by Theorem IO.

4, X2 iS Xn or I'h'! Ax2Xa ' Thus, since I'l''= lxlx2r we
conch.ude that xl is xa or I'l-t lxlxa; (b) the origin of

a2 :a3 has the form Rx2 :Qx3r chez'e R and Q are si.mole funcr-

tors. In this case, by Theorem l0.5, x2 is Xa or I' F'= lx2x:

Since rt ' Ax2x]. r j't follows that xl is xa OI' I'l''= lxlxn
(c) the origi.n of a2:a3 has the form Rx2:x3; by the in-
duction hypothesis. x7 is x or I'l''= lx2xa ' Since
rf+ Ax.)x., w© see that xl is xn or I'l-'= IXIX

THEOREAI J0.8. Fu€P} i.s a set of formulas of li.

i"l-:'P if, and only i.fr there exists a formula a of f such
that 6 is a verdi.on of a, a i.s positive, and tr(F) F'= a.

Pxoo5. (i) One easily proves that if F':--:-p,then th.
exists a f ormula a of f such that P is a version of cl,

is positive (Theorem 7.2. Co='o]]ary ].) and tr(1') 1-'t a
(ii.) i.f there exists a posits.ve formula a of f , of whi.ch

is a verdi.on, tr(F) }-'La and a has the form b:c, then

there exists a strictly tr(r)-regular sequence al'a2f'-'an

such that a, is b and a. is c. by Theorem 5.7 (the fact
that g is a version of b=c a:ssures us that b and c are
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distinct terms) . Ve have three possible cases: (a) the c>rigin

al:a2 has the form xl:Qx2' where Q is a single functor.

Since xl is not Xa ' because al:aa has the version B in
fl , Theoren l0.4 1.mplies that I'' }=' ARlEn ando therefore.

that I'F ' lxlxn; but P is Axlxn or lxlxnl because it is

a version of al:aa; (b) the origin of al :a2 has the form

Pxl:Qx2' with P and Q si.mole functors; xl is not xa and.
by Theoren l0.5, we have F I'= lxlxa} but B is lxlxa; (c) the
origin of al:a2 .has the form Pxl =x21 where P is a simple
lunctor; as in case (b) . Theorem l0.7 entails that I ' }'='P

THEOREll la.9. i'utB} is a set of formulas of Zt. If there

exists a proof of P from I ' i.n the direct system in which
the rule of trivialization is not used, then tr(r) l-'= a , for

some a of f such that P is a version of a.

Pa.oo{. By induction on a deduction of # from I'

T+fEOREM 10.10. Let I' be a set of formulas of .Ct. If I'
is inconsistent ', then there exists a term a of C such that

tr (r) }-- a ll a.

Pa.oo6. If I' i.s inconsistent ', it is easy to see that
there exists a formula a of Zi such that rl''ta, I'b;'C(a),
and both a and c(a) c&n be deduced from I ' in the direct

system. without any application of the rule of t='ivialization.

We may suppose that a is positive. By Theorem ].0.9,
tr(1') h--)3 and tr(r) t"': 7 , where a is a version of 6 and

C(a) a version of V. 'Fwo alternatives are possible: (a)
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Is Axy; f thenhas the Earn x=Ry and 7 has the form

Sxly, hence tr(1') h'= SxllSx; (li) a is lxy; J3 has the
foUR Tx=Ry and 'Y the foxx xly, thus tx'(r)TxlITx.

T+fEOREM Ja.JT. r i.s a set Q£ formulas c>f li and 3 is a

negate.ve formula of this language. If there exists a formula
a of f such that P is a version or a and tr(1') }"=a. then

r }-t p .

P4006. Suppose there is a negative formula a of ' tr(1')
such that B is a version of a and tx (1') }-'S a . The formula

P has either the form Exy or the form Oxy. By Theorem 5.2.

there is a negative element 7 0r tr(1') such that tr(1')'.'y }'J'a.

There are two cases to be considered.

(a) '7 i.s tr(Ezw), thus '7 is zllw andre have

(j.) tt (r)' , ally }-=

( ii) Ezw € r.

Let i3 be Exy; then a will be xlly; (i)f Theorems 5.5
].0.6 and l0.8 ensure that either r I' Axz (j.f x i.s not z) and

rF'=Ayw (j.f y is not w) or Fb'Axw (if x is not w) and

rt-=Ayz (j.f y is not z). Together with (ii.), thi.s leads

easily to the conclusion that rl-': Exy. Xow let $ be Oxy.
This means that a i.s Sxlly. for some non-empty functor S

From (1) , Theorems S.S, l0.6 and l0.8 ensure that ei.Cher

I' }-: lxz (if x i.s not z) and I't"IAyw (j.f y 'is not v)
rt-= lxw (if x is not w) and I'lJAyz (if y is not z). Com-

bined with (11) , this easily leads to the conclusion tl'at

r h£ oxy

3i



Cb) '7 is tr(Ozw). Thus ltls Pztlw, for sane simple
functor P which occurs in no elenent of tz'(r)' and we have

(1) tr(r)' , Pz ll w I':' a ;

(lj.) Ozw € r

We can shaw that g cannot be Exy. For suppose it were, then

the formula a would be xH y. By (i) and Theorem 5.5, we

would derive that. for sane functor R , tz-(1')' t"=' x: RPz or

tr(r)' t-- y= RPz ; but this conclusion is nape Inpossibble by

Theorem 5.3. Hence. f i.s Oxy and a is Sxlly, for some

non-empty functor S. As i.t is not the case, for all func-

tors R, that tr€1')' h': y:RPz (Theorem 5.3) , we obtain from
( 1) and TheoreEa 5 . 5 that:

(iiJ.) tl'(1')' +'= Sx=RPz. y=Qw, f or some functor R and

some non-empty (Theorem l0.6) functor Q.

This and Theorems 5.4 and l0.6 imply that:
(iv) tr€1'1' 1-= z =Tx, f or some non-empty functot T.

From (i.il), (iv) and Theorem l0.8, we derive that I' b'= A.zx

and r t-'!- Ayv. TogeU\er with (il) , this leads to the conclu-

sion that I' b'= Oxy

THEOREA{ lO.IZ. I' is a set of formulas of f and a.b and

c are kerr\s of f. if, I'',bile b'= alla , then there exi.st non-

empty functors R and S such that I" }' Rb= Sc.

Paoo6 with the help of Theorem 5.S.

THEOREA{ la.13 Let I ' be a set of formulas of fl , x and

two distinct simple terms. P a si.nile functor which does
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not occur in any elenent of tr(1')', and a a term of f. If
t:'(1')', Pxlly }''= alla , then there exists a non-empty functor R
such that tr€1')' F'= x = Ry

Pa.oo6. If tr(1')', Pxllyh": aHa . then by Theorem IO.-12

there exi.st non-empty functors S and T such that

tx (1')' }"= SPx=Ty. By Theorem 5.3. Ty can be written as
QPUy, where Q is a functor and U a functor in which P does
aot occur. By.TI)eoz'en S.4, tr(J')'l''=x=Uy and, by Theorem

l0.6. U is not empty.

THEOREM 7a.J4. The set of formulas I ' of li i.s Incon-

si.stent ' i.f, and only ifr there exists a term a of f such

that tr (r) F"-- a ll a.

P.toad. By Theorem ].0.].0, it suffices to show that I' i.s
inconsi.stent ' i.f there is an a such that '.r(1') }-= ail a. If

there exists such a term, then, by Theorem 5.2, there exists
a negative formula P in tr(1') satisfyi.ng the conditi.on:

tr(1')',P }'= all a. Hence, we have that either P is of the

form xlly, where x and y are distinct si.nile terms, or P
is of the f orm Px ll y, where x and y are two distinct si.m-

ole terms, and P a si.mple functor that does not occur i.n any
elenent of tr(F)'. In the first hypothesis. I't-= Exy and,

by Theorems [0.8 and ].0.12. rt'= ]xy; in the second.

r l-= Oxy and, by Theorems l0.8 and lO.13. 1'1-'= Axy. In both

hypotheses. r ' is inconsistent
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THEOREM JO.15. 1' J.s a consistent ' set of formulas of flr
x and y are simple terms, and a is a term of f . If

tr(r).tr(Axy) IJ all a, then tr(1') F:'P , for some formula P
such that Oxy is the version of P.

Paaa{. Suppose that tr(1'),tr(Axy) l-'t aH a. Since I ' is
consistent+, by Theoren lO.14 Axy+ I'. By Theorem 5.2. there
exists a negative element ' of tr(1') such that
tr(r ' u {Axy}). ' I'-t all a . 'rwo cases are posse'ble: ' is zllw or

7 is Pz ll w, for seine simple functor P whi.ch does not occur
In any element of the set tz (r ' utAxy}) (obviously,
tr(r ' u {Axy}) is identi.cal to tr(I'U {Axy})')

By Theorem lO..12, either there are functors R and S such

that tr(rutAxy})'l"= Rz = Sw (if ' is ally) or
tr(I ' U {Axy})'l-'= RPz = Sw (if '7 iS Pzllv). Hence. by Theorem S.7i

there exists a strictly tr(I' u {Axy})'-regular sequence

bl,b2,...,bn such that bl is Rz (when ' is zllw) or RPz (when '
is Pztlw), and b. is Sv. Since tr(1')'1''/-bl:bBr because

tr(r) b-- Rail Sw (if '7 j.s zllw) oz' tr(r) t''= RPz ll Sw (if 'Y is

Pz llv) and I' is consistent. we conclude that there exists a

j (l<j <n) for which bt:bj+l has as origin tr(Axy) or the
converse of tr (Axy)

Let tr(Axy) be of the f otm x:Qy, where Q is a simple

functor which does not occur in any element of tr(1') . There
exists the ].east number h such that l<h<a and the origin

of bh:bh+l is x:Qy ot Qy:x. and there exists the
greatest nuaiber k such that l<k<a and tbe origin of bk :

bt+l is x:Qy or Qy=x. Clearly, the sequences
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blrb2f"',bh (blr bl if h:l) and bk+l'bk+2/-fba (bRr bti if
k+l=ti) are tr(1')' ar. Thereforef by Theoren 5.6:

(1) tr(1")'1-'=bl :bh and tr(r)'l''="bk+l:b

I,et the origin of. bh:bh+l be Qy:x. We show that the

c>rigin of bk:bk+l cannot be x:Qy. suppose it were, then
by (i) r we would have:

(li) tr(r)'l:--UQy=Sw, for some functor U;

(lil) if 'r is zllv, then tr(r)'l"=Rz=VQy, f or some

functor V ;

(iV) if 'Y is pzllw, then tr(F)'lJ'RPz=VQy, f or some

functor V .

Together with Theorems 5.3 and 5.4, (ii) inpli.es that

tr(1')'1--y=Mw, f or some functor M; (iii) implies that, if
7 is zllv, then tr(r)'l-=Y'Tz, for some functor T; (iv)
imolies that, if 7 is Pzllw, then tr(r)'l-=-y:z. From

this. i.t is not difficuJ.t to derive the result that
tr(1') 1.'. ally and. therefore, by means of Theorem lO.14, that
I' would be incons i.stent

On the othe!' hand. if the origin of bti:bh+l is x :Qg',

then the ori.gin of bk:bk+l can not be Qy:x, in view of
Theorem l0.2. There remain, then, two a].ternati.ves:

a) Theoriginof bk:bk+l and bh:bh+l j's x; Qy
in this case, tr(1')'1"LTQy=Sw, for some functor T, and. by
Theorem 5.3 and 5.4. tr(1')'i'y:Vw. for some functor V
F'urthermore. ei.cher tr(1')'1.'.Rz=Ux (if I is zllw) .or

trig')'t--RPz=Ux (if 'Y is Pzllw), for sane functor U.Si.nce

tr(1') 1.'. Rzll Vw (when ' is zll w) or tr(1') t='RPzll Vw {when
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7 ].s Pzlv), it follows that tr(r) t"= Uxl y and, therefore.

that tr(r) }-- PUxllyi but the version of PUxliy is Oxy.

(b) 'rhe origin of bh:bh+l and bk:bk+l is Qy:x: in
thi.s case, tr(F)'l-:-Ux= Sw, for some functor U. However,

'y cannot be Pz ll w, because otherwise we would have

tr(r)'l-'LRPz=TQy, for some functor T , and thi.s i.s absurd

by Theorems 5.3 &nd S-4, take.ng Into account that P and Q are

disti.nct simple functors which do not occur in any el-event of

tr(r)'. We have, then, that ' is zllw and, consequently.

that tr(1')'1-'L Rz =TQy, for sane functor T. By Theorems 5.3

and 5.4, tr(r)'l-'=y=Vz, for some functor V. Since
trtr) }'= vz ll sw, it follows that tr(r) l-=' Uxll y and,there-

fore, that tr(1') 1"L PUxlly; but the versa.on of PUxlly is
Oxy .

flEORElt Ja. 16. Given the conditions of Theorem lO.15:

.f tr(r),tr(lxy) f'= a=a. then tz (r) t"'= ally.

pa.oo{. If tr(1').tr(lxy) t"'L a=a we show. by analogy

with the proof of Theorem lO.IS, that lxy#r , that there
exi.sts a negative element 7 in tr(1') for which

tell'U {lxy.r)', 'r b ''- a=a and that there ale functors R and S
for which, if ' is zllw, then tl'(I'utlxy})'l-=Rz=Sw, and
if 'T j.s Pzllw, then tr(I'utlxy})'l-'=RPz:Sw. Thus there

exists a str]ct].y tr(]' U {]xy})-regal.ar sequence b].f b2p"''b

such that bl i.s Rz (if ' i.s zllv) or bl is RPz (if 'v i.s
Pzllw). b. Is Sv andscxne j (l<j<a) is such that the

origin of bj:bj+i is tr(lxy) or a converse of tr(lxy).
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By Theorens l0.2 and l0.3 there exists just one j which sat-

isfies these conditions, because tr(lxy) is Qx=Ty. for
simple functors Q and T that do not occur in any element of

tr(1'). Since tr(r)'lJ- bi:bj and bj is UQx or bj is UTy,

for some functor U, we deduce that '7 cannot be Pz ll y; other-
wi.se. we would have that tr(1') 1-!- RPz = UQx or tr(1')' 1-=- RPz=UTy

where P, Q and T aze distinct si.BRIE functors, with P differ-

ent fl'om Q. whi.ch do not occur in any element of tr(1')', and
thi.s is absurd. by Theorems 5.3 and 5.4. Therefore, f7 has

the form zll w and b. i.s Rz. We then have two alternatives:

(a) The ori.gi.n of bj:bj+l is Qx:Ty: in this case,
we have tr(1')'1-'LRz=UQx and tr(1')'1-=-VTy=Sw, for some

functors U and V. By Theorems 5.3 and S.4, we have that. for
functors M and N. tr([')']-'=x=Mz and tr(1')'1-'=y=Nw; but

tr(r) l-'t Mz ll UNw. and ' tr(r)' l"'= x ll y

(b) The OI'iain o: bj=bj+i is Ty=Qx: the. proof is
si.milan to that of the precede.ng case.

THEOREM lO.17. i'ulP} is a set of formulas of f!.
r t-= P i.f, and only ifP ei.Cher there exists a term a of f

such that tr(1') 1-: alla or thee'e exists a formula a of f
such that P is a version of d and tr(r) l-'= a.

THEclREM lO.18. Given the hypothesis of Theorem lO.17:

ri--P i.f, and only if. there exists a term a of f such

that tr(r) l"': al a or there exists a formula a of f such
that P is a version oi a and tr(1') 1'=a.
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Pa.oo{. Taking Into account Theorems 8.1 and lO.17,

only have to shaw the 'only If ' part of the present theorem.

If I' h-- B, there exists a finite subset A of I' such that the

pair <P,a> has a prc>of in the indirect systen. If we show

that tr(A) }-lana, £ot sable a of Zp c>r tr( ) f"= a £or
sane a of f such that P is a version of a, tbe proof is

fete because tr.{A) g tr (I'}

We prove, by induction on a proof of <P,a) in the i.n-
direct system, that tr(A) f-- all a for some a c>f fl
tr(A) t"fa for sane a such that B is a version of a. The

sole noa-tlivlal case of the induction i.s that in which

suppose that the pair <P ,A> is obtained from pz'evious pairs
(7 ,AulC(P)}> and {C('Y), AulC(P)}). By the induction hy-

pothesis either there i.s an a such that tr(A),tr(C(P)) }"'= all a
or there exists a formula p and a formu].a T of f such that:

"r is averslonof p, C('y) is aversionof
tr(6.),tr(C(g)) }='= p , and tr(A),tr(C(P)) }-= r. We nay suppose

that ' is positive. There are then two subcases: (i) P is
of the form x=Qy and T is or the form Pxly, where P
and Q are non-empty functors; (ii) p has the form Px : Qy
and lr has the form x ll y, where P and Q are non-empty func-

In both subcases, we have that tr(A),U(C(P)) }': Px ll Px.

So, in any case there. is an a such that tr(A).tr(C(P))l-'= all a
If C(g) is positive, then tata) I''=a, for some a such that
P is a version of a, by Theorems 1.0.15 and ].0.16. Let C(P

then be negative: if A is inconsistent ', then our final
conclusion follows from Theorem lO.14. Let us suppose that A
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Is coiwlstent ': we concltade that C(6) 4 4, because otherwise

we would have that tz (A) F'l Px B Px and this is Inconpatlbl.e

with the cohslstency ' of f,by Theorem I0-14. But Theorem S-2

assul'es us that there exists a negative formula 9 such that

iPetr(A)ustr(C(P))} and tr(A)',-Pt"lPxll Px. If ctr£A),
then we would live that tr(4) }-'= Px ll Pxr and thi.s i.s impOs'

bible. Thus, tr(4)',tr(C(P)) f'l Pell Px. By Theorems lO.12

and IO.13, there exists a formula a of f such that f i$ a
version of a aad ' tr (a.) }-- a .

7'HEOREM 70.19. Let rutP} be a set of formu].as of f
I' }---P if, and only i.f, I't-!n#.

Paood. ;. By Theorems; ].0.17 and lO.18.

COROLLARY I.. I ' i.s consistent i.f, and only if, I ' is con

si stent

CARO LLARr 2 I' F:' B .if . and only if r implies P

Every simple functor of f has the form Pj or the form

Q: , for some numerical subscript j. E'or each simple functor

of form P: and each interpretation 7 of li, we deli.ne a
function ]'rj whose doaiain is the set of the non-empty sub-
sets of the set. Ulh: there exists a si.nple term x such that
h = J(x)j. Let us call this last set 0' . We then deli.ne J '

by the follows.ng clauses: 1) i.f there are simple terms x and

P
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y such that Oxy isdlej la of Zi, 3(x)fJ(y). and
k = T(x). then Tj (k) = J(x) - J(y): 2) if there exist simple

terms x and y such that lxy is the j formula of is.
)(x)nT(y)++P and k:](x)p then 31(k) : J(X)nT(y);
3) otherwise, T'j (k) :k.

For each simple functor of form QS and for each inter-
pretation J of it, we define a function 3wJ, whose domain

s also the set on the non-enpty subsets of 0' , by the
clauses: 1) if there exist single terms x and y such that

Axy isthe j tuu].aof.Ci, T(x)ST(y). and k: T(y).
then 7j(k) :?(x); 2) if there are si.mole Leans x and y

such that lxy is the j-th formula of li, T(x) n7(y) #: +.
and k=7(y), then }u](k):}(x)nT(y); ' 3) otherwise,

J'lj (k) = k.

Let } be any interpretati.on of -Ct . For all natural num-

bers j, 7Pj and TQj are rests'active functions on 0' . Now,

consider the ordered pair whose first coordinate is 0' and
whose second coordinate is the function which associates the

set T(x) with each simp].e term x of .C, and the function 7''

with each single functor R of f . Such a pair is clearly an

interpretati.on of .CP which we shall denote by I '

TtfEOREx{ la.?a. I' is a set of formulas of .CI and J is an

interpretation of .Ct. l£ 3 is a model c>f I', then I ' is a
model of tr (r ) .

pa.oo6. Let T be a model of I'. Let p be an element of
tr(1') and a the elanent of r such that P is tr(a). We
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have four cases :

(1) a i.s Axy, P is x=Qy: behave 3(x)S3(y) and

Axy is the j-th formula of Ci 'thus, T i(T(y)): T(x), I.e..

IJ(Qiy) = 13(x), and IT(P) :l.

(li) a is lxyf f j.s plx:Qiy: we have that

7(x)n7(y)#+ and lxy is thee rnulaof li. There-

, TQi(T(V)) = 7(X) nT(y) = JPj(J(x)). Consequently,

l3(pix) : I (Qly), and l7(P) :l

(ilj.) cx is Oxy, J3 is plxlly: }(x)fT(y) andOxy is

the j-ta formula of fl . Thus, T j€+(x)) :T(X) -T(y), i..e.,

IT(p;x) :T(X) -T(y), and I'T(Pjx)nlT(y) =Q. Therefore,

I'($) = 1

(iv) ci is Exy, +3 is x ll y:

(x) nl (y) = 0, and ] (P) : ]..

T(x) r\ T(y) = +,

THEOREM la.21. 1' i.s a seton formulas of 11; P is

formula of li , and a is a f onnula of f, such that P i.s

version of a. If tr(1') implies a. then I ' imply.es P

Pa.oo{. Let 7 be a model of r- By Theorem ].0.20, 1

is amode]. of tr(1') and. then. IT(a):l. We have four

cases: (i) P is Axy, a j.s of the form x:Ry: by the defi-

nition of an interpretation of f, l}(x) gl'(y); that is,

T (x) g T(y) and T (#3) : 1.

Cli) p is lxy, a is of the form Sx=Ry: we have



that IJ (x) n IT (y) ++ that is :r (x) n 3 (y) # + and T (P ) l

The other cases can be si.ni.lally treated

THEOREM l0.22. Let i'U{P} be a set of formulas of ll.
I' implies P if. and only if. there exi.sts a formula a of f
such that P is a version of a and tr(1') implies a.

Pa.oo6. Given Theorem l0.21. It only reatains for us to

prove the only-if rt. If I ' igplles f. then by Theoren lO.19.

r' l-'=g. By Theorem IO.18, we have two possibilities: (i) there

exists a formula a of f such that P is a version of a and

tr(r') f"La ; in this hypothesis, tt(1') i.mplies a, by the
conpleteness theorem f or the strong algebraic system, because

any deduction of the weak algebraic system is obvi.Dusty also
a deduction of the strong system; (11) there exists a
a of f such that tr(1') 1--alla; thus, tr(1') 1--all a and.

by the rule of trivialization. tr(1') f-- a , for any formula

a of f, and tr(1') vacuously implies a, for any formula a of
.C. fence, tr(1') inplles u(#). where P is a version of
tr (P ) .

THEOREl{ 10. 23. Gi.ven the conditions of Theorem l0.22:

r 1-- 13 if. and only ifr there exists a formula u of f such
that e is a version of a and tr(1') 1--a

Pa,oo6. By Theorem l0.22 and the completeness theorems

for the Aristotelian systen and strong algebraic system.
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